ISSN 3034-4565 (Online)

Оказание медицинской помощи различным группам населения

Редакционная статья

Ведение пациентов с железодефицитной анемией на этапе оказания первичной медико-санитарной помощи. Методические рекомендации

Железодефицитная анемия — полиэтиологичное заболевание, развитие которого связано с дефицитом железа в организме из-за нарушения поступления, усвоения или повышенных потерь данного микроэлемента, характеризующееся микроцитарной и гипохромной анемией. В практическом руководстве подробно описывается этиология, лабораторная и инструментальная диагностика, тактика ведения пациентов в различных клинических ситуациях. Методические рекомендации предназначены для специалистов практического здравоохранения, оказывающих первичную медико-санитарную помощь, в том числе врачей-терапевтов, врачей общей практики (семейной медицины), кардиологов, гастроэнтерологов и других специалистов, оказывающих помощь пациентам с железодефицитной анемией.

Ключевые слова: железодефицитная анемия, диспансерное наблюдение, врач-терапевт, первичная медико-санитарная помощь.

Отношения и деятельность: нет.

Рецензенты

Куняева Т. А. — к.м.н., доцент, заместитель главного врача по медицинской части ГБУЗ РМ "МРЦКБ", главный внештатный специалист по терапии Министерства здравоохранения Республики Мордовия и Приволжского федерального округа (Саранск, Россия);

Шарапова Ю.А. — к.м.н., доцент кафедры госпитальной терапии и эндокринологии ФГБОУ ВО ВГМУ им. Н.Н. Бурденко Минздрава России, главный терапевт Министерства здравоохранения Воронежской области (Воронеж, Россия).

Методические рекомендации утверждены на заседании Ученого совета ФГБУ "НМИЦ ТПМ" Минздрава России (протокол № 7 от 16 сентября 2025 г.).

Для цитирования: Драпкина О.М., Авалуева Е.Б., Бакулин И.Г., Бакиров Б.А., Баранов И.И., Виноградова Н.Г., Виноградова М.А., Гапонова Т.В., Гаус О.В., Гиляревский С.Р., Голшмид М.В., Дроздова Л.Ю., Дудина Г.А., Жарова М.Е., Жибурт Е.Б., Журина О.Н., Иванова Е.В., Котовская Ю.В., Кохно А.В., Куликов И.А., Купряшов А.А., Ливзан М.А., Луговская С.А., Лукина Е.А., Наумов А.В., Павлюченко Е.С., Паровичникова Е.Н., Пономарев Р.В., Рунихина Н.К., Скаржинская Н.С., Стародубова А.В., Тарасова И.С., Тихомирова Е.В., Теплых Б.А., Ткачева О.Н., Троицкая В.В., Федоров Е.Д., Федорова Т.А., Ховасова Н.О., Чернов В.М., Чесникова А.И., Шепель Р.Н., Ших Е.В. Ведение пациентов с железодефицитной анемией на этапе оказания первичной медико-санитарной помощи. Методические рекомендации. *Первичная медико-санитарная помощь.* 2025;2(3):55-114. doi: 10.15829/3034-4123-2025-61. EDN: UKRRDT

Бакулин И.Г., Бакиров Б.А., Баранов И.И., Виноградова Н.Г., Виноградова М. А. Гапонова Т.В., Гаус О.В., Гиляревский С.Р., Голшмид М.В., Дроздова Л.Ю., Дудина Г.А., Жарова М.Е., Жибурт Е.Б., Журина О.Н., Иванова Е.В., Котовская Ю.В., Кохно А.В., Куликов И.А., Купряшов А. А., Ливзан М. А., Луговская С.А., Лукина Е.А., Наумов А.В., Павлюченко Е.С., Паровичникова Е. Н., Пономарев Р. В., Рунихина Н. К., Скаржинская Н.С., Стародубова А.В., Тарасова И.С., Тихомирова Е.В., Теплых Б.А., Ткачева О. Н., Троицкая В. В., Федоров Е.Д., Федорова Т.А., Ховасова Н.О., Чернов В.М., Чесникова А.И., Шепель Р.Н.*, Ших Е.В.

Драпкина О. М., Авалуева Е. Б.,

ФГБУ "Национальный медицинский исследовательский центр терапии и профилактической медицины" Минздрава России, Москва, Российская Федерация ФГБУ "Национальный медицинский

исследовательский центр гематологии" Минздрава России, Москва, Российская Федерация

Российское общество профилактики неинфекционных заболеваний, Москва, Российская Федерация

Национальное гематологическое общество, Москва, Российская Федерация

*Corresponding author (Автор, ответственный за переписку): r.n.shepel@mail.ru

Поступила: 16.09.2025 Принята: 19.09.2025

ISSN 3034-4565 (Online)

Providing medical care to various groups of the population

Editorial

Management of patients with iron deficiency anemia in the context of primary health care. Guidelines

Iron deficiency anemia is a multietiological disease, the development of which is associated with iron deficiency due to its impaired intake, absorption or increased losses, characterized by microcytosis and hypochromic anemia. The practical guide describes in detail the etiology, paraclinical diagnostics, management of patients in various clinical situations. Guidelines are intended for primary health care professionals, including internists, general practitioners, cardiologists, gastroenterologists and other specialists providing care to patients with iron deficiency anemia.

Keywords: iron deficiency anemia, outpatient follow-up, primary care physician, primary health care.

Relationships and Activities: none.

For citation: Drapkina O. M., Avalueva E. B., Bakulin I. G., Bakirov B. A., Baranov I. I., Vinogradova N. G., Vinogradova M. A., Gaponova T. V., Gaus O. V., Gilyarevsky S. R., Golshmid M. V., Drozdova L. Yu., Dudina G. A., Zharova M. E., Zhiburt E. B., Zhurina O. N., Ivanova E. V., Kotovskaya Yu. V., Kohno A. V., Kulikov I. A., Kupryashov A. A., Livzan M. A., Lugovskaya S. A., Lukina E. A., Naumov A. V., Pavlyuchenko E. S., Parovichnikova E. N., Ponomarev R. V., Runikhina N. K., Skarzhinskaya N. S., Starodubova A. V., Tarasova I. S., Tikhomirova E. V., Teplykh B. A., Tkacheva O. N., Troitskaya V. V., Fedorov E. D., Fedorova T. A., Khovasova N. O., Chernov V. M., Chesnikova A. I., Shepel R. N., Shikh E. V. Management of patients with iron deficiency anemia in the context of primary health care. Guidelines. *Primary Health Care (Russian Federation)*. 2025;2(3):55-114. doi: 10.15829/3034-4123-2025-61. EDN: UKRRDT

АХЗ — анемия хронических заболеваний, БАЭ — баллонно-ассистированная энтероскопия, ВКЭ — видеокапсульная эндоскопия. ВО — верхний отдел. ВОЗ — Всемирная организация здравоохранения. ГС — гериатрический синдром. ДЖ — дефицит железа, ДИ — доверительный интервал, ДПК — двенадцатиперстная кишка, ЖДА — железодефицитная анемия, ЖДС — железодефицитный синдром, ЖКК — желудочно-кишечное кровотечение, ЖКТ — желудочно-кишечный тракт, ИБС — ишемическая болезнь сердца, ИЛ — интерлейкин, ИПП — ингибиторы протонной помпы, ИХ — иммунохимический, КРР — колоректальный рак, KT — компьютерная томография, ЛДЖ — латентный дефицит железа, ЛЖ — левый желудочек, MP — магнитно-резонансная, НО — нижний отдел, НПВС — нестероидное противовоспалительное средство, НТЖ — насыщение трансферрина железом, ОАК — общий анализ крови, ОЖСС — общая железосвязывающая способность сыворотки крови, ОР — отношение рисков, ПЖВВ — препараты железа для внутривенного введения, ПОПЖ — пероральные препараты железа, РКИ — рандомизированное клиническое исследование, рРТф — растворимый рецептор трансферрина, РФ — Российская Федерация, СЖ сывороточное железо, СКК — скрытая кровь, СН — сердечная недостаточность, СНн Φ В — сердечная недостаточность со сниженной фракцией выброса, СО — средний отдел, ССЗ — сердечно-сосудистые заболевания, СФ — сывороточный ферритин, ФВ — фракция выброса, ФП — фибрилляция предсердий, ХБП — хроническая болезнь почек, ХСН — хроническая сердечная недостаточность, ЭГДС — эзофагогастродуоденоскопия, EFSA — Европейское управление по безопасности пищевых продуктов (European Food Safety Authority), gFOBT — гваяковая проба, IOM — Институт медицины США (The Institute of Medicine), MCH — среднее содержание гемоглобина в эритроците (Mean Corpuscular Hemoglobin), MCHC — средняя концентрация гемоглобина в эритроците (Mean Cell Hemoglobin Concentration), MCV — средний объем эритроцита (Mean Corpusculare Volume), OLGA — Operative Link for Gastritis Assessment of Atrophic Gastritis, RDW — ширина распределения эритроцитов по объему (Red-cell Distribution Width), RET-He (CHr) — среднее содержание гемоглобина в ретикулоците.

Drapkina O. M., Avalueva E. B., Bakulin I.G. Bakirov B. A., Baranov I.I., Vinogradova N. G., Vinogradova M. A., Gaponova T.V., Gaus O.V., Gilvarevsky S.R., Golshmid M. V., Drozdova L. Yu., Dudina G. A., Zharova M. E., Zhiburt E.B., Zhurina O.N., Ivanova E. V., Kotovskaya Yu. V., Kohno A. V., Kulikov I. A., Kuprvashov A. A., Livzan M. A., Lugovskaya S. A., Lukina E. A., Naumov A. V., Pavlyuchenko E. S., Parovichnikova E. N., Ponomarev R.V., Runikhina N.K., Skarzhinskaya N.S., Starodubova A.V., Tarasova I.S., Tikhomirova E.V., Teplykh B.A., Tkacheva O. N., Troitskaya V. V., Fedorov E.D., Fedorova T.A., Khovasova N. O., Chernov V. M., Chesnikova A. I., Shepel R. N.*, Shikh E.V.

National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Health of Russia, Moscow. Russian Federation

National Medical Research Center for Hematology of the Ministry of Health of Russia, Moscow, Russian Federation

Russian Society for the Prevention of Noncommunicable Diseases, Moscow, Russian Federation

National Hematology Society, Moscow, Russian Federation

*Corresponding author: r.n.shepel@mail.ru

Received: 16.09.2025 Accepted: 19.09.2025

Термины и определения

Анемия — понятие, которое определяется Всемирной организацией здравоохранения (ВОЗ) как концентрация гемоглобина <130 г/л для мужчин, <120 г/л для небеременных женщин и <110 г/л для беременных.

Железодефицитная анемия (ЖДА) — это приобретенное заболевание, характеризующееся снижением содержания железа в сыворотке крови, костном мозге и тканевых депо, в результате чего нарушается образование гемоглобина и эритроцитов, развивается гипохромная анемия и трофические расстройства в тканях.

Желудочно-кишечное кровотечение (ЖКК) из неустановленного источника — это клинически подтверждённый факт кровопотери в просвет желудочно-кишечного тракта (ЖКТ), при котором стандартный диагностический алгоритм (включая эзофагогастродуоденоскопию (ЭГДС), колоноскопию, интестиноскопию и визуализирующие методы) не позволяет идентифицировать точную анатомическую локализацию источника кровотечения.

Источник ЖКК — это морфологический субстрат (сосудистое, опухолевое, эрозивно-язвенное или иное патологическое образование) в пределах ЖКТ, служащий непосредственной причиной поступления крови в его просвет.

Кровотечение из верхних отделов ЖКТ (ВО ЖКТ) — определяется как кровотечение, источник которого находится в пищеводе, желудке и/или двенадцатиперстной кишке (ДПК) — выше связки Трейца — зоны перехода из ДПК в тощую кишку.

Кровотечение из средних отделов ЖКТ (СО ЖКТ) — кровотечение, источник которого находится между связкой Трейтца и илеоцекальным клапаном.

Кровотечение из нижних отделов ЖКТ (НО ЖКТ) — кровотечение, источником которого является толстая кишка дистальнее илеоцекального клапана.

Латентный дефицит железа (ЛДЖ) — это состояние, характеризующееся истощением запасов железа в организме при нормальной концентрации гемоглобина.

Эритроцитсодержащие компоненты донорской крови — компоненты донорской крови, содержащие эритроциты в плазме или во взвешивающем растворе, полученные методом афереза или из консервированной крови.

Раздел 1. Определение и эпидемиология железодефицитной анемии в Российской Федерации

ЖДА — полиэтиологичное заболевание, возникновение которого связано с дефицитом железа (ДЖ) в организме вследствие нарушения его

поступления, усвоения или повышенных потерь, характеризующееся микроцитозом и гипохромией эритроцитов. Анемия представляет собой довольно часто встречающийся в клинической практике диагноз, однако ее распространенность зависит от многих причин, таких как социально-экономические условия, качество питания, пораженность гельминтозами, кровопотери из-за кровотечений различной локализации и т.д. [1].

Подсчитано, что примерно 33% населения земного шара страдает анемией, основной причиной которой считается ДЖ. По данным ВОЗ, ДЖ является основной причиной анемии, поражая 29% небеременных женщин, 38% беременных женщин и 43% детей¹.

По данным Росстата, в Российской Федерации (РФ) наблюдается высокая распространенность анемии: в 2022 г. заболевание было зарегистрировано у 1 507,4 тыс. человек, впервые диагноз анемия был установлен у 485,9 тыс. человек [2]. В РФ существуют объективные сложности сбора статистических данных по частоте анемии в целом, ЖДА и ЛДЖ в частности. По оценкам, ЖДА составляет ~75% всех случаев анемии [3]. По данным на 2022 г. из числа женщин, закончивших беременность, анемия была выявлена у 248,9 на 1000 родов. Среди детей до 14 лет анемия в 2022 г. была выявлена у 220,1 тыс. человек [2]. Среди регионов РФ наибольшую распространенность анемии на 100 тыс. населения в 2020 г. имели Приволжский (1207,3), Сибирский (1089,1) и Уральский (1057,4) федеральные округа [4].

Анализ показателей гемограммы и распространенности ее патологических изменений при профилактическом исследовании в популяции взрослого работающего населения выявил, что самым частым патологическим изменением гемограммы была анемия, с максимальной частотой встречавшаяся у женщин 30-49 лет и у мужчин старше 60 лет. Анемия у женщин при диспансеризации в целом выявляется в 12-13% случаев, достигая 21-22% в возрасте 40-49 лет. У мужчин частота выявления анемии при диспансеризации составила 2,8%, а при обращении за медицинской помощью — 5,1% с пиком до 21% в возрасте 60-69 лет [5].

Среди факторов, способствующих высокой распространенности ЖДА в РФ стоит отметить алиментарный фактор, низкую информированность населения о ЛДЖ; низкий социально-экономический статус большого числа граждан страны, что ассоциировано с недостаточным потреблением пищевых продуктов питания, богатых железом; высокую распространенность неадекватного несбалансированного питания и ограничительных диет сре-

World Health Organization. (2020). WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations. World Health Organization. https://apps.who.int/iris/handle/10665/331505.

ди женщин фертильного возраста; низкую приверженность к лечению ЖДА, а также отсутствие должной подготовки к беременности с позиций диагностики и устранения ДЖ [6].

Раздел 2. Этиология и патогенез железодефицитной анемии

2.1. Этиология

Причинами возникновения железодефицитных состояний (ЖДС) являются² [7-19]:

- 1. Потери железа при хронических и острых кровотечениях (наиболее частая причина до 80%):
- кровотечения из ЖКТ: эрозии/язвы ВО ЖКТ (пищевода, желудка, ДПК), варикозное расширение вен пищевода, синдром Мэллори–Вейсса, синдром Кэмерона, дивертикулы толстой кишки, паразитарные инфекции (в т.ч. анкилостомы), воспалительные заболевания кишечника (язвенный колит, болезнь Крона), опухоли ЖКТ, геморрой, анальные трещины, сосудистые мальформации;
- маточные кровотечения: длительные и обильные менструации, эндометриоз, фибромиома;
- макро- и микрогематурия: хронический гломеруло- и пиелонефрит, мочекаменная болезнь, поликистоз почек, опухоли почек и мочевого пузыря; доброкачественная гиперплазия предстательной железы;
 - носовые, легочные кровотечения;
 - длительный гемодиализ;
 - длительное донорство крови.
 - 2. Нарушение всасывания железа:
 - резекция тонкой кишки;
 - хронический энтерит;
 - синдром мальабсорбции;
 - амилоидоз кишечника, почек;
 - целиакия.
- 3. Нарушение транспорта и распределения железа: сердечно-сосудистые заболевания (ССЗ).
 - 4. Повышенная потребность в железе:
 - интенсивный рост (подростковый возраст);
- беременность (особенно многоплодные, частые беременности);
 - период лактации;
 - интенсивные занятия спортом.
- 5. Недостаточное поступление железа с пищей вследствие неадекватного несбалансированного питания:
 - новорожденные;
 - дети раннего возраста;
 - женщины репродуктивного возраста;
 - лица пожилого и старческого возраста;
 - вегетарианство, веганство и др.
- Клинические рекомендации "Железодефицитная анемия". 2024. https:// cr.minzdrav.gov.ru/preview-cr/669_2.

2.1.1. Факторы и группы риска развития ДЖ

К основным **группам риска ЖДА** относятся² [7-18, 20]:

- женщины детородного возраста;
- дети (особенно в возрасте до 1-го года) и подростки;
 - пациенты пожилого и старческого возраста;
 - пациенты с ССЗ;
- пациенты с некоторыми хроническими заболеваниями органов пищеварения;
- пациенты с низким уровнем доходов, низким социально-экономическим статусом.

Факторами риска ЖДА являются:

- менструации длительностью >7 дней, длительность цикла <21 дней, обильные менструации с потерей крови >80 мл за цикл (необходимость менять гигиенические средства чаще, чем каждые 1-2 ч, использование >5 прокладок или тампонов в сутки, необходимость менять средства ночью, либо наличие крупных сгустков) (часто);
 - донорство крови (часто);
 - регулярные процедуры гемодиализа (часто);
- многоплодная и повторная беременность, малый интергенетический интервал (часто);
- использование козьего молока как основного продукта в питании детей до 1-го года (часто);
- увеличенные потери железа из-за микрокровотечений из кишечника у детей (обусловленные ранним введением кефира и цельного коровьего/козьего молока в рацион детей раннего возраста; глистные инвазии, инфекционно-воспалительные заболевания кишечника)²;
 - хронический атрофический гастрит;
- длительная терапия цианокобаламином при В₁₂-дефицитной анемии (возможно);
 - длительная (>1-го года) лактация (возможно);
 - беременность (возможно);
- рацион питания с недостаточным потреблением красного мяса (соблюдение строгих диет и постов, вегетарианство или веганство) (возможно):
- новорожденные с недостаточной массой тела (возможно);
- длительная терапия антацидами/ингибиторами протонной помпы (ИПП) (возможно);
- неадекватное несбалансированное питание, недостаточность питания (мальнутриция).

2.2. Патогенез

Эволюция предопределила широкий спектр железосодержащих белков, занимающих важное место в обеспечении жизнедеятельности эукариот [21]. Изменчивость окислительно-восстановительного потенциала железа Fe²⁺/Fe³⁺ в зависимости от рН среды, лиганда и кофакторов делает его в своём роде универсальным элементом для ката-

лиза многих биохимических реакций, в частности, энергетического метаболизма, клеточного сигналинга, экспрессии генов, регуляции роста и дифференцировки клеток, связывания и транспорта кислорода [21, 22]. Оно участвует в синтезе ДНК [23], β-окислении жирных кислот [24] и других процессах [22]. Наряду с гемом, входящим в состав не только гемоглобина, но и каталазы, миелопероксидазы, NO-синтазы, железо обеспечивает функционирование железосерных белков, негемовых оксигеназ и т.д. Особого внимания заслуживает участие железа в функционировании пролилгидроксилаз, обеспечивающих развитие адаптивных реакций к условиям гипоксии [25].

Генетический профиль индивида играет значительную роль в метаболизме железа и может отвечать за предрасположенность к развитию ЖДА [26, 27]. Некоторые гены, такие как *TMPRSS6*, HAMP, TFR2, SLC40A1 и HFE связаны с дисбалансом железа [28, 29]. Ряд исследований выявил различия в частотах аллелей и генотипов у пациентов с ЖДА по сравнению с контролем [30, 31]. Так, например, ген ВМР2 участвует в регуляции гепсидина — ключевого гормона, который управляет гомеостазом железа в организме. Избыток гепсидина может привести к анемии, а его дефицит — к перегрузке железом [28, 32]. Показано, что полиморфные варианты гена TMPRRSS6 ассоциированы с повышенным уровнем гепсидина у пациентов с почечной недостаточностью и ЖДА [33]. Патогенные варианты данного гена также выявлены у пациентов с рефрактерной ЖДА, при которой отмечено повышение уровня гепсидина и плохой ответ на проводимую терапию препаратами железа [34-36].

Физиологическая потребность в железе для взрослых — 10 мг/сут. (для мужчин) и 18 мг/сут. (для женщин); для детей (в зависимости от пола ребенка) — от 4 до 18 мг/сут.³. Суточные потери железа составляет в среднем 1-2 мг (при отсутствии потерь крови).

Возникновению и развитию ЖДА способствует неадекватное несбалансированное питание, дефицит не только железа, но и некоторых витаминов и белка. Поскольку обеспеченность витаминами С и B_2 влияет на всасывание и транспорт железа, фолиевая кислота и витамин B_{12} участвуют в синтезе гема, витамин B_6 — в созревании эритроцитов. Кроме того, биодоступность многих микронутриентов из растительных источников значительно ниже, чем из мяса [37].

Развитие ДЖ может быть обусловлено тремя основными факторами: нарушением поступления железа из внешних источников или депо организма, повышенным потреблением железа вследствие физиологической или фармакологической стимуляции эритропоэза, а также различными видами кровопотерь, включая наружные и внутренние, явные и скрытые (оккультные) кровотечения. Кроме того, к значимым причинам относятся травматические, патологические и искусственные кровопотери, в том числе обусловленные ятрогенными воздействиями.

У онкологических больных ДЖ может быть связан с обусловленной лечением (химио- или лучевая терапия) недостаточностью питания или нарушениями всасывания (мальнутриция или мальабсорбция) [38, 39].

2.3. Белки, регулирующие метаболизм железа

Железо — один из необходимых микроэлементов в организме человека, играет ключевую роль в процессах метаболизма, роста и пролиферации клеток. Исключительная роль железа определяется важными биологическими функциями белков, в состав которых входит этот биометалл: гемоглобин и миоглобин, которые составляют 62% и 8%, соответственно, от общего количества железа в организме человека; ферменты, участвующие в процессах биологического окисления, в том числе процессах детоксикации ксенобиотиков и продуктов эндогенного распада (цитохром Р450 и др.); ферменты, нейтрализующие активные формы кислорода и поддерживающие окислительновосстановительный баланс в организме (пероксидазы, каталазы, цитохромы).

Вместе с тем избыточное содержание железа сопряжено с цитотоксическими эффектами, которые обусловлены способностью железа, как металла с переменной валентностью, запускать свободнорадикальные реакции, приводящие к перекисному окислению липидов биологических мембран, токсическому повреждению белков и нуклеиновых кислот. Таким образом, как ДЖ, так и перегрузка железом имеют катастрофические последствия для организма, поэтому содержание данного микроэлемента жестко регулируется.

В организме здорового человека содержится ~3-5 г железа. Из этого количества большая часть железа (2100 мг), входит в состав клеток крови и костного мозга, 600 мг содержится в макрофагах различных типов, 1000 мг — в клетках печени и лишь ~400 мг железа входит в состав других клеток организма. Практически все метаболически активное железо находится в связанном с белками состоянии, из которых основными являются:

³ Методические рекомендации 2.3.1.0253-21. 2.3.1. Гигиена питания. Рациональное питание. Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации. Методические рекомендации" (утв. Главным государственным санитарным врачом РФ 22.07.2021) https://www.consultant.ru/document/cons_doc_LAW_395381.

трансферрин, трансферриновые рецепторы, ферритин, белки-транспортеры (DMT-1, ферропортин) и феррооксидазы.

Трансферрин осуществляет внеклеточный транспорт железа от мест его всасывания (в кишечнике) или освобождения (катаболизм эритроцитов в селезенке и печени) к местам нового использования, главным образом, к эритроидным предшественникам в костном мозге.

Утилизация железа, доставленного трансферрином к клеткам-потребителям, осуществляется с помощью специальных рецепторов, расположенных на поверхностной мембране клетки (трансферриновые рецепторы). Большая часть железа, поступившего в цитоплазму клетки, используется для синтеза гемоглобина, а в неэритроидных клетках — для синтеза ДНК, РНК и железосодержащих ферментов. Оставшаяся небольшая часть железа хранится внутриклеточно в безопасной и нетоксичной форме — в составе молекулы ферритина.

Ферритин является преимущественно внутриклеточным белком, депонирующим железо и освобождающим его по мере необходимости. В сыворотке крови здоровых людей содержится небольшое количество свободного ферритина (СФ), концентрация которого отражает запасы железа в организме: снижение СФ ≤30 мкг/л характерно для истинного ДЖ, повышение СФ >1000 мкг/л — для первичных и вторичных гемохроматозов. При наличии очага воспаления или опухолевого роста повышение концентрации СФ носит характер острофазового ответа. Помимо воспаления, гиперферритинемия может наблюдаться при массивном некрозе органов и тканей, когда в плазму крови освобождается значительное количество внутриклеточного ферритина. Таким образом, концентрация СФ может служить показателем тканевых запасов железа только в отсутствии инфекционно-воспалительных, опухолевых и деструктивных процессов в организме.

Транспортный белок DMT1 (divalent metal transporter) в значительном количестве экспрессируется на ворсинчатом эпителии слизистой ДПК, где осуществляет доставку ионов пищевого железа в энтероциты.

Ферропортин — транспортный белок, обеспечивающий выход железа из клеток (энтероцитов, макрофагов, гепатоцитов). Выключение функции этого белка приводит к накоплению ионов железа внутри клетки.

Ферроксидазы — белки, окисляющие двухвалентное железо в трехвалентное, что необходимо для включения ионов железа в трансферрин.

Раздел 3. Обмен железа в норме

В организме человека железо не синтезируется. В антенатальном периоде плод получает ~300 мг железа через плаценту от матери. После рождения ребенка стартовый запас железа быстро увеличивается за счет поступления пищевого железа: сначала — из лактоферрина молочных продуктов, в дальнейшем — за счет гемового железа и железа растительных продуктов. После достижения возрастной нормы, в среднем равной 4 г, содержание железа поддерживается на постоянном уровне путем замещения неизбежных потерь всасыванием пищевого железа. В физиологических условиях ежедневно теряется не >0,05% (<2,5 мг) от общего количества железа. Эти потери включают железо, удаляющееся со слущивающимся эпителием кожи и ЖКТ, с потоотделением. Столько же (1-2 мг) железа ежедневно всасывается в кишечнике. Всасывание железа происходит в слизистой оболочке ДПК. С помощью транспортера DMT-1 пищевое железо доставляется в энтероциты, затем поступает в плазму крови или задерживается в энтероцитах. Этот процесс регулируется гепсидином: в случае сидеропении железо, не задерживаясь, поступает в кровоток и соединяется с трансферрином⁴ [40, 41].

В составе трансферрина всосавшееся железо поступает через систему воротной вены в печень, где часть железа остается в гепатоцитах и хранится в виде запасного фонда, преимущественно внутриклеточно в составе ферритина. Печень располагает наиболее значительными запасами железа, которое при необходимости может быстро освобождаться для метаболических процессов. Большая часть железа транспортируется в костный мозг — к местам синтеза гемоглобина. Меньшая часть железа доставляется другим клеткам-потребителям, имеющим рецепторы для трансферрина. В основном это активно пролиферирующие клетки с высокой потребностью в железе.

Из костного мозга железо в составе эритроцитов поступает в кровоток, где циркулирует в течение трех-четырех месяцев (время жизни нормальных эритроцитов). В дальнейшем, специализированные макрофаги селезенки и печени захватывают и разрушают состарившиеся (или поврежденные) эритроциты, осуществляют деградацию гемоглобина и освобождение железа, которое затем вновь поступает в плазму крови, связывается с трансферрином и повторно утилизируется, т.е. доставляется к активно пролиферирующим клеткам, преимущественно, эритроидным клеткам костного мозга, синтезирующим гемоглобин. Ежедневно для эритропоэза требуется ~20–30 мг железа, тогда как ежедневное поступление пищевого железа из кишечника составляет всего 1-2 мг. Необходимые 20-30 мг железа ежедневно возвращаются в цир-

Савченко В.Г., Лукина Е.А., Сметанина Н.С. и др. Национальные клинические рекомендации перегрузка железом: диагностика и лечение. 2018.

куляцию макрофагами селезенки и печени. Этот процесс носит название "рециркуляции железа" и имеет гораздо большее физиологическое значение, чем всасывание железа в кишечнике.

Процессы всасывания, рециркуляции и хранения запасов железа регулируются гепсидином — низкомолекулярным (25 аминокислот) гормоном, который продуцируется клетками печени. Механизм действия гепсидина состоит в блокаде ферропортина, в результате чего блокируется выход железа из клеток: энтероцитов, макрофагов и гепатоцитов. В результате выключения функции ферропортина блокируются процессы всасывания, рециркуляции и освобождения железа из запасных фондов, что ведет к снижению содержания железа в плазме крови.

В физиологических условиях продукция гепсидина клетками печени регулируется содержанием железа в крови, степенью оксигенации ткани печени, а также уровнем провоспалительных цитокинов, в частности, интерлейкина 6 (ИЛ-6). Повышение концентрации железа в крови, а также активный воспалительный процесс с продукцией ИЛ-6, сопровождаются усилением секреции гепсидина, блокадой ферропортина и накоплением железа в депо. Снижение концентрации железа в крови, а также продукция эритроферрона эритробластами, подавляет экспрессию гепсидина, что ведет к восстановлению функции ферропортина, активации процессов всасывания, рециркуляции и высвобождению железа из депо. Таким образом, поддерживается баланс между поступлением и потреблением железа.

При отрицательном балансе сначала расходуется железо, хранящееся в депо, затем развивается тканевой ДЖ, проявляющийся широким спектром метаболических нарушений, к которым приводит дисфункция железосодержащих и железозависимых ферментов (ЛДЖ), и только позже развивается ЖДА.

Раздел 4. Клиническая картина

Представления о клинической картине пациента с ЖДА зависят от его основного заболевания, а также от формы анемии (острая или хроническая). Большинство симптомов отражает кардиоваскулярные и газообменные процессы и их компенсацию [40, 41].

В зависимости от выраженности ДЖ в организме различают ЛДЖ и ЖДА.

Для **ЛДЖ** характерно появление сидеропенического синдрома вследствие дисфункции важнейших железосодержащих ферментов. Клиническими проявлениями данного периода являются: извращение вкуса и пристрастие к необычным запахам, сухость кожи, ломкость и изменения ногтей с по-

явлением поперечной исчерченности, выпадение волос, ранняя седина, изменения слизистых оболочек, ангулярный стоматит, трещины в углах рта, мышечная слабость. Часто могут присоединяться неврологические проявления: неврастения, нарушения работоспособности, снижение концентрации внимания, нарушения сна. Также ДЖ может приводить к развитию синдрома "беспокойных ног", характеризующегося появлением неприятных ощущений в нижних конечностях в покое зудящего, колющего, распирающего характера, которые уменьшаются при движении [11, 42, 43].

В дальнейшем, при нарастании ДЖ, развивается клиническая картина ЖДА, с появлением анемического и нарастанием сидеропенического синдромов. Отмечается появление бледности кожи и слизистых, головокружения, сердцебиения, одышки, шума в ушах, головных болей, при тяжелом течении заболевания — обмороков, снижение толерантности к физической нагрузке, что связано с недостатком кислорода в тканях и органах. Могут наблюдаться изменения со стороны ЖКТ, которые проявляются нарушением желудочной секреции, воспалительными изменениями слизистых, затруднением глотания сухой и твердой пищи, дисфагией. Нарастает мышечная слабость, вплоть до гипотонии мочевого пузыря с развитием недержания мочи. Следствием миастении могут быть невынашивание беременности, осложнения в процессе беременности и родов² [44-46].

Длительный дефицит внутриклеточного железа напрямую влияет на функцию кардиомиоцитов, нарушая митохондриальное дыхание и снижая сократимость и расслабление, что приводит к развитию миокардиодистрофии и сердечной недостаточности (СН) [47].

При ЖДА выявляются различные изменения в иммунной системе (снижение уровня лизоцима, В-лизинов, комплемента, некоторых иммуноглобулинов, количества Т- и В-лимфоцитов), что приводит к развитию вторичного иммунодефицита. Однако однозначного ответа на вопрос, повышает ли ДЖ риск инфекционных заболеваний, нет. Нарушения противоинфекционного иммунитета у пациентов с ЖДА имеют сложный характер. С одной стороны, ДЖ препятствует развитию патогенных микроорганизмов, нуждающихся в железе для собственного роста и размножения. С другой стороны, ДЖ опосредованно приводит к нарушению клеточных механизмов резистентности к инфекциям (снижение микробицидной активности гранулоцитов, нарушение пролиферации лимфоцитов). В целом, предрасположенность пациентов с ЖДА к развитию инфекционных заболеваний не столь велика, как это предполагалось ранее. Напротив, лечение ДЖ парентеральными препаратами железа значительно увеличивает риск развития инфекций, вероятно, вследствие доступности вводимого железа для использования микроорганизмами и их быстрого роста [48, 49].

Пациенты с данными симптомами могут обращаться за медицинской помощью к терапевтам, кардиологам, урологам, гинекологам, неврологам, дерматологам, в зависимости от особенностей клинической картины и ее интерпретации пациентом.

Однако вышеописанная клиническая картина позволяет заподозрить ЖДА или ЛДЖ уже на этапе сбора анамнеза и жалоб, выполнить необходимое обследование для верификации причин, приведших к данному состоянию и своевременно назначить адекватную терапию.

Раздел 5. Лабораторная диагностика и дифференциальная диагностика железодефицитной анемии

Диагноз ЖДА основывается на характерной клинико-гематологической картине заболевания и наличии лабораторного подтверждения абсолютного ДЖ. Несмотря на четко очерченную клиническую картину ЖДА, симптомы анемии и сидеропении обладают низкой диагностической ценностью и не позволяют уверенно диагностировать ЖДА. Решающее значение в диагностике ЖДА имеют лабораторные исследования (клинический анализ крови с подсчетом ретикулоцитов и биохимические параметры обмена железа) [50].

ЖДА следует рассматривать как клиническое проявление тяжелой степени ДЖ (таблица 5.1). Очевидно, что тяжесть анемии отражает тяжесть гипоферритинемии и позволяет прогнозировать ее негематологические проявления, отражающиеся, прежде всего, в нарушении энергетического метаболизма и функции сердечно-сосудистой системы.

Для дифференциальной диагностики анемий наиболее информативными в общем (клиническом) анализе крови (ОАК) являются эритроцитарные индексы (средний объем эритроцита (МСV), среднее содержание гемоглобина в эритроците (МСН), средняя концентрация гемоглобина в эритроците (МСНС), ширина распределения эритроцитов по объему (RDW)), на основании которых основана классификация анемий (рисунок 5.1). Чем выше показатели RDW, тем более выражен анизоцитоз эритроцитов [51, 52].

В большинстве современных гематологических анализаторах, помимо относительного и абсолютного количества ретикулоцитов, рассчитывается среднее содержание гемоглобина в ретикулоците (RET-He или CHr — обозначения зависят от компании-производителя). Информативность показателя RET-He (или CHr) заключается в том,

что он отражает нарушение синтеза гемоглобина в костном мозге и является индикатором железодефицитного эритропоэза. Увеличение показателя RET-Не на фоне ферротерапии является ранним маркером эффективности лечения ЖДА и опережает развитие ретикулоцитарного криза и повышение концентрации гемоглобина.

При ЖДА отмечается снижение концентрации гемоглобина, гематокрита, МСН и МСНС, МСV. Количество эритроцитов обычно находится в пределах нормы. Показатель анизоцитоза RDW не изменён или незначительно повышен (>14,5%). Ретикулоцитоз не характерен, но может присутствовать у больных с кровотечениями. При ЖДА отмечается снижение RET-He (или CHr) <28 пг, что свидетельствует о ДЖ.

Характерными морфологическими признаками ЖДА являются гипохромия эритроцитов и анизоцитоз со склонностью к микроцитозу (рисунок 5.2). Более объективными показателями являются дополнительные эритроцитарные параметры современных гематологических анализаторов (процент микроцитов и гипохромных эритроцитов), повышающиеся при ЖДА. Увеличение гипохромных эритроцитов >5,0% свидетельствует о наличии железодефицитного эритропоэза.

Среднее содержание гемоглобина в ретикулоците может использоваться в мониторинге лечения пациентов с ЖДА. RET-He (или CHr) повышается через 3-5 дней при приеме пероральных препаратов железа (ПОПЖ) и является наиболее ранним маркером эффективности терапии.

Таким образом, на основании ОАК, используя эритроцитарные и ретикулоцитарные индексы можно предположить ЖДА, которая является микроцитарной (МСV <80 фл), гипохромной (МСН <27 пг), с низким средним содержанием гемоглобина в ретикулоците (RET-He<28 пг), повышенным количеством гипохромных эритроцитов (НҮРО >5%) и микроцитов (МісгоR, %), разной степени выраженности анизоцитозом (RDW >14%).

Вместе с тем, перечисленные морфологические характеристики не позволяют отличить ЖДА от так называемой "анемии хронических заболеваний" (АХЗ), в основе которой лежит перераспределительный ДЖ, связанный с наличием в организме очага воспаления, инфекции или опухоли [12].

Для верификации наличия абсолютного ДЖ у пациентов с подозрением на ЖДА необходимо исследовать показатели обмена железа — СФ, трансферрин, общую железосвязывающая способность сыворотки крови (ОЖСС), сывороточное железо (СЖ) и рассчитать коэффициент насыщения трансферрина железом (НТЖ).

Отличительными признаками истинной ЖДА являются низкая концентрация СФ, отражающая

Таблица 5.1

Дифференциальная диагностика ЖДА, АХЗ и перегрузки железом

Показатель	Референсные значения*	ЖДА	AX3	Перегрузка железом (β-талассемия)
Сывороточное железо	10,7-32,2 мкмоль/л	\	↓N	↑
ожсс	46-78 мкмоль/л	↑	N	\
ЖТН	17,8-43,3%	\	N↓	↑
Сывороточный ферритин	11,0-306,8 нг/мл	↓	N или ↑	↑
Трансферрин	200-360 нг/мл	↑	N↓	\

Примечания: * — приведены референсные значения клинико-диагностической лаборатории ФГБУ "НМИЦ гематологии" Минздрава России, которые могут отличаться в различных клинико-диагностических лабораториях в зависимости от используемых коммерческих тест-систем; N — нормальное значение показателя; ↓ — снижение показателя; ↑ — повышение показателя. Сокращения: АХЗ — анемия хронических заболеваний, ЖДА — железодефицитная анемия.

Рис. 5.1. Классификация анемий с использованием эритроцитарных индексов.

Сокращения: Hb — гемоглобин, MCV — средний объем эритроцита (mean corpuscular volume) (фл), MCH — среднее содержание гемоглобина в эритроците mean corpuscular hemoglobin) (пг), MCHC — средняя концентрация гемоглобина в эритроците (mean corpuscular hemoglobin concentration) (г/л), RDW — показатель анизоцитоза, характеризует гетерогенность эритроцитов по объёму (red cell distribution width) (%).

истощение тканевых запасов железа, и повышение ОЖСС и концентрации трансферрина (таблица 5.1). Концентрация СЖ и коэффициент НТЖ в типичных случаях снижены, однако наличие нормальных и даже повышенных показателей не исключает диагноз ЖДА, поскольку прием пациентом накануне исследования железосодержащих препаратов, мясная диета или предшествующая (за 10-14 дней) трансфузия эритроцитсодержащих компонентов донорской крови могут сильно повлиять на концентрацию СЖ и, соответственно, коэффициент НТЖ, что необходимо учитывать при оценке результатов исследования [41, 53, 54].

Следует помнить, что исследование биохимических параметров обмена железа необходимо проводить после 10-12-дневного перерыва приема железосодержащих препаратов.

Определение показателей обмена железа необходимо сочетать с базовыми исследованиями — общий анализ мочи, биохимический анализ крови с определением основных показателей

функционального состояния печени и почек (общий белок, альбумин, общий билирубин, прямой билирубин, аспартатаминотрансфераза, аланинаминотрансфераза, креатинин, мочевина, щелочная фосфатаза, гамма-глютаминтранспептидаза), а также скринингом на наличие вирусных гепатитов В и С, ВИЧ-инфекции, сифилиса. Проведение этих исследований необходимо для правильной интерпретации показателей обмена железа, так как состояние обмена железа, с одной стороны, является "эндокринной функцией печени", с другой — существенно изменяется при наличии воспалительных, деструктивных или опухолевых процессов в печени и других жизненно важных органах.

Развитию ЖДА предшествует период ЛДЖ, лабораторными критериями которого служит низкая концентрация СФ на фоне нормальной концентрации гемоглобина.

В обычной практике проводить исследование костного мозга для подтверждения диагноза ЖДА

нет необходимости. Однако потребность в проведении пункции и трепанобиопсии костного мозга может возникнуть в случаях упорной, резистентной к лечению лекарственными препаратами железа анемии и/или при наличии других цитопений (лейко- или тромбоцитопении). При ЖДА в костном мозге какие-либо патологические признаки не определяются, клеточность, как правило, нормальная, реже отмечается умеренная гиперплазия. Отличительной особенностью костного мозга при ЖДА является уменьшение количества сидеробластов — эритрокариоцитов, содержащих гранулы железа (в норме 20-40%).

ЖДА необходимо дифференцировать с анемиями, осложняющими течение хронических воспалительных и опухолевых заболеваний — АХЗ или "анемией воспаления", а также с гипохромными анемиями, протекающими с перегрузкой железом: а и β-талассемии, порфирии, свинцовая интоксикация. Как правило, при АХЗ анемия нормоцитарная нормохромная (эритроцитарные индексы не изменены), но может быть микроцитарной гипохромной. В этих случаях дифференциальная диагностика не может основываться только на концентрации гемоглобина и значениях эритроцитарных индексах и проводится с использованием комплекса лабораторных тестов: определение СФ, трансферрина, СЖ, ОЖСС и расчет НТЖ (таблица 5.1).

 $C\mathcal{K}$ — отражает количество негемового железа в исследуемой сыворотке крови. Условно соответствует количеству железа, связанного с трансферрином. При ДЖ концентрация СЖ <12,5 мкмоль/л.

ОЖСС— характеризует общее количество железа, которое может связаться с имеющимся в плазме трансферрином. Косвенно отражает количество трансферрина в плазме. При ЖДА ОЖСС >65,0 мкмоль/л.

HTЖ—расчетный показатель, отражающий удельный вес СЖ от ОЖСС, рассчитывается по формуле: $HTЖ = (CЖ/OЖСС) \times 100$ (%). Нормальное значение HTЖ = 20-45%. При ЖДА HTЖ < 16%, при анемии воспаления и CH < 20%.

СФ — железосодержащий белок, концентрация которого в физиологических условиях отражает величину запасов депонированного железа. В настоящее время определение СФ считается наиболее надежным тестом для диагностики ДЖ ("золотой стандарт"). Независимо от возраста концентрация СФ <30 мкг/л — самый ранний и специфический признак истощения тканевых запасов железа. При ЖДА концентрация СФ <12-15 мкг/л. Однако, использование в качестве критерия ДЖ концентрации СФ <30 мкг/л значительно повышает чувствительность и специфичность этого теста, что обуславливает его широкое использование в клинической практике [53].

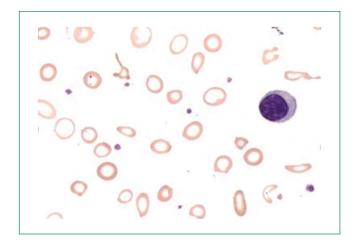


Рис. 5.2. Периферическая кровь. ЖДА. Микроцитоз и гипохромия эритроцитов.

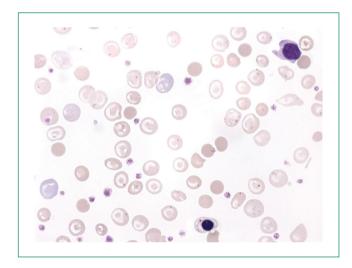


Рис. 5.3. Периферическая кровь. β-талассемия. В мазке крови много мишеневидных эритроцитов, нормобласты (ядросодержащие эритроциты).

Кардинальным отличием АХЗ от ЖДА служит повышенная или нормальная концентрация СФ, отражающая наличие достаточных запасов железа в организме (в основном, в макрофагах, в печени и костном мозге), а также повышение С-реактивного белка. Концентрация СФ значительно повышается в условиях воспаления (острые и хронические инфекции, болезни печени, аутоиммунные и онкологические заболевания), что может маскировать наличие ДЖ. В этих случаях ДЖ носит перераспределительный характер и является следствием сложных изменений в регуляции метаболизма железа, имеющих приспособительный характер и отражающих иммуновоспалительный ответ организма на имеющийся инфекционный или опухолевый процесс⁴.

Назначение лекарственных препаратов железа для коррекции АХЗ в подобных случаях может быть не только неэффективным, но и опасным для пациента, поскольку как опухолевые клетки, так и инфекционные агенты используют железо для собственных процессов роста и пролиферации [48].

Микроцитарная гипохромная анемия является характерным морфологическим признаком α- и β-талассемии, тяжелые формы которых ассоциируются с глубокой анемией и выраженными признаками перегрузки железом (повышенные концентрация СЖ и значение НТЖ, сниженные значений трансферрина и ОЖСС). Однако легкие субклинические формы талассемии, протекающие с легкой микроцитарной гипохромной анемией, зачастую расцениваются как железодефицитные без исследования показателей метаболизма железа, что влечет за собой назначение неадекватной ферротерапии, способной привести к ускоренному развитию тканевой перегрузки железом и усугублению анемии.

При β-талассемии в крови наблюдается умеренное снижение гемоглобина при нормальном, чаще повышенном количестве эритроцитов, снижение МСV, МСН, МСНС, которое может быть более выраженным, чем при ЖДА. В мазках крови отмечается анизоцитоз, поэтому показатель RDW выше нормальных значений, пойкилоцитоз (различные формы эритроцитов), мишеневидность эритроцитов (рисунок 5.3), встречается базофильная пунктуация эритроцитов, ретикулоцитоз. Диагноз устанавливается на основании результатов электрофореза фракций гемоглобина.

Таким образом, дифференциальный диагноз микроцитарных гипохромных анемий (ЖДА, АХЗ, талассемии, сидеробластных анемий) диктует необходимость анализа показателей гемограммы с эритроцитарными и ретикулоцитарными индексами в сочетании с комплексом биохимических тестов (показатели обмена железа, С-реактивного белка).

Раздел 6. Инструментальная диагностика: мультидисциплинарный поиск

Распространенный механизм, лежащий в основе развития ЖДА — хроническая кровопотеря, например, вследствие ежемесячной кровопотери у женщин фертильного возраста; как побочный эффект донорства крови; в результате гематурии или кровопотери в просвет ЖКТ. Примерно треть женщин в постменопаузе и мужчин, страдающих ЖДА, имеют патологические процессы именно в ЖКТ. ЖДА может быть первым проявлением рака желудка или толстой кишки, других серьёзных опухолевых и неопухолевых заболева-

ний, что подчеркивает важность быстрого и полного обследования этих пациентов. Существует множество заболеваний и патологических состояний — признанных причин ЖДА. Основные из них, которые возможно обнаружить, либо подтвердить в процессе инструментальной диагностики, представлены в таблице 6.1.

Большое разнообразие и отсутствие специфических клинических симптомов, стертое начало или протекание заболевания под различными "клиническими масками" обусловливает коварство заболевания и обращение пациентов к врачам различных специальностей, это приводит к тому, что пациенты с ЖДА далеко не всегда ведутся оптимально, в том числе они зачастую неверно, несвоевременно и неполноценно обследуются [55]. Верификация ЖДА, как правило, требует проведения комплекса инструментальных исследований для выяснения причины развития анемии, поиска источника кровопотери и что немаловажно — исключения жизнеугрожающих заболеваний, таких, например, как рак желудка или толстой кишки, которые могут быть причиной ЖДА. Ориентация на нозологическую диагностику очень важна, так как в большинстве случаев при лечении анемии можно воздействовать на основной патологический процесс [56]. Обычно лечение ЖДА начинают сразу после лабораторного подтверждения диагноза, чтобы лечение и обследование пациентов с ЖДА протекали параллельно.

Абдоминальные симптомы, даже если они присутствуют у пациента, не являются надежным показателем наличия, характера или локализации заболеваний ЖКТ, лежащих в основе ЖДА. Перед тем, как принимать решение о проведении инструментальной диагностики следует выяснить/уточнить информацию о характере питания пациента, принимаемых пациентом лекарственных препаратах ((нестероидные противовоспалительные средства (НПВС), ИПП, стероидные гормоны, антикоагулянты), ранее выполненных операциях на желудке и/ или тонкой кишке, в т.ч. бариатрических; о наличии носовых кровотечений или гематурии; о сопутствующей патологии, в частности о наличии хронических заболеваний почек, хронической СН (ХСН); наследственных заболеваниях и состояниях; об особенностях гинекологического анамнеза у женщин (репродуктивный возраст/постменопауза, особенности менструаций, наличие/отсутствие беременности) [57-59]. Также необходимо выяснить, является ли пациент донором крови, либо профессиональным атлетом-"стайером". Физикальное обследование, как правило, не позволяет выявить специфичные признаки, но иногда может обеспечить постановку правильного диагноза, например, при наследственной геморрагической телеангиэктазии.

При лабораторно подтверждённой ЖДА, помимо ОАК и общетерапевтического биохимического анализа крови, рекомендуется провести общий анализ мочи (на предмет микрогематурии), скрининг на целиакию, при подозрении на аутоимунный гастрит — анализ крови гастрин, пепсиноген I и II, соотношение пепсиноген I/II; в надлежащих случаях, эндоскопическое обследование ВО и НО ЖКТ². Также всем пациентам с впервые установленным диагнозом ЖДА рекомендуется проведение общедиагностических инструментальных исследований для поиска/исключения возможного источника кровотечения и выявления сопутствующей патологии бронхолёгочной, сердечнососудистой и мочеполовой систем (таблица 6.1). В этот перечень входят: рентгенография или компьютерная томография (КТ) органов грудной клетки; ультразвуковое исследование органов брюшной полости, забрюшинного пространства и малого таза; ультразвуковое исследование щитовидной и паращитовидных желез; электрокардиография, эхокардиография [1, 11, 56, 60-62]. Независимо от результатов тестирования на микроскопическую гематурию, в процессе диагностического поиска следует рассмотреть возможность и необходимость более детальной визуализации мочевой системы, учитывая признанную связь почечноклеточного рака с ЖДА [63]. Другими источниками гематурии и, соответственно, ЖДА могут быть хронический гематурический нефрит, IgAнефропатии, мочекаменная болезнь, перманентный внутрисосудистый гемолиз.

Наиболее трудными для диагностики являются кровопотери в замкнутые полости, которые наиболее часто встречаются при эндометриозе — эктопическом разрастании эндометрия, чаще всего в мышечном и подслизистом слоях матки, реже — экстрагенитально.

Аналогичная ситуация наблюдается при изолированном легочном сидерозе, а также гломических опухолях, возникающих в замыкающих артериях, встречающихся в некоторых артериовенозных анастомозах, например, в легких, плевре. Эти опухоли, особенно при изъязвлении, могут приводить к кровопотерям и развитию ЖДА.

Другими источниками кровопотерь могут быть носовые кровотечения, главным образом, у пациентов с геморрагическими диатезами (наследственная телеангиэктазия, иммунная тромбоцитопения и др.).

Всем взрослым пациентам с впервые установленным диагнозом ЖДА мужского пола, а также женщинам в постменопаузе либо в репродуктивном возрасте, у которых степень ЖДА не коррелирует с ежемесячной потерей менструальной крови или кровопотерей в родах, рекомендуется про-

ведение ЭГДС, колоноскопии и интестиноскопии в указанном порядке, до момента обнаружения достоверного источника кровопотери в ЖКТ, либо его исключения² [58, 64, 65].

Эндоскопия ВО и НО ЖКТ является стандартным диагностическим подходом к обследованию пациентов с ЖДА. У мужчин и женщин в постменопаузе, с впервые диагностированной ЖДА, ЭГДС и колоноскопия с осмотром терминального отдела подвздошной кишки [66], как правило, должны быть первой линией обследования ЖКТ. ЖДА может быть вызвана целым рядом заболеваний ЖКТ, включая рак, субэпителиальные, нейроэндокринные опухоли и лимфомы, поэтому у взрослых пациентов с впервые установленным диагнозом ЖДА без очевидного объяснения причины её развития следует рассмотреть возможность срочного обследования ЖКТ. Возраст, пол, концентрация гемоглобина и MCV — всё это независимые предикторы риска наличия у пациента злокачественного новообразования ЖКТ, как причины ЖДА. Но нет доказательств того, что люди с ЖДА могут быть стратифицированы по риску обнаружения у них рака ЖКТ на основе набора этих простых и объективных клинических переменных. Необъяснимая ЖДА у всех лиц, находящихся в группе риска, является общепринятым показанием для ускоренного направления на специализированную медицинскую помощь, поскольку злокачественные новообразования ЖКТ могут проявляться таким образом, часто при отсутствии специфических симптомов.

ЖДА нередко является многофакторной по происхождению и поэтому наличие одного или нескольких факторов риска её развития, не должно препятствовать исследованию ЖКТ, особенно в старших возрастных группах. Конкурирующая патология (т.е. серьёзные, не связанные между собой заболевания как ВО, так и НО ЖКТ) встречается у 1-10% пациентов с ЖДА — это следует особенно учитывать у пожилых пациентов [65]. Существует мнение, что лишь обнаружение рака ВО ЖКТ позволяет отказаться от выполнения колоноскопии у пациентов с ЖДА, но так как это исследование всё равно входит в программу обследования таких пациентов, то можно считать, что это положение постепенно устаревает. Выявление по данным ЭГДС эрозивно-язвенных, сосудистых и атрофических поражений пищевода, желудка и ДПК не должно рассматриваться в качестве основной причины ЖДА до момента исследования HO ЖКТ² [67].

Качество видео-эндоскопической диагностики напрямую зависит от используемой аппаратуры, квалификации эндоскописта и подготовки пациента. Возможности внутрипросветной эндоскопической диагностики многократно возросли с внедрением в клиническую практику видеоэндоскопов высокого разрешения, с возможностью улучшения и дополнительной модификации изображения, за счёт его получения в узком спектре света, а также прижизненного оптического увеличения изображения, в зависимости от модели эндоскопа, от 70 до 510 раз. Для обеспечения высокой информативности эндоскопических исследований необходима тщательная подготовка пациентов к эндоскопии (особенно к колоноскопии) в соответствии с рекомендациями Российского эндоскопического общества, опирающимися на проверенную доказательную базу. ПОПЖ часто окрашивают стул в чёрный цвет и могут вызывать запоры, поэтому обычно рекомендуется сделать паузу в их приёме на несколько дней перед подготовкой кишечника к колоноскопии.

При недоступности или наличии противопоказаний к колоноскопии, а также при незавершенной колоноскопии возможно выполнение КТколонографии. Однако, как отмечает Ивашкин В.Т. и др. КТ и виртуальная колоноскопия, в отличие от колоноскопии, не имеют решающего значения в диагностике колоректального рака (КРР) [68]. Недостатком является то, что она не выявляет предраковые изменения слизистой оболочки толстой кишки, и сосудистые мальформации. Кроме того, при обнаружении значимой патологии, впоследствии все равно потребуется колоноскопия для удаления полипов, получения гистологии или маркировки (татуажа) опухоли перед лапароскопической резекцией. Место КТ с контрастным усилением, но без подготовки кишечника у пациентов с ЖДА ограничено, так как у этих пациентов исследование позволяет выявить только относительно грубую патологию и с высокой вероятностью может пропустить некоторые виды рака.

Также при недоступности, наличии противопоказаний или незавершённой колоноскопии возможно выполнение видеокапсульной эндоскопии (колоноскопии) (ВКЭ) — практически неинвазивного метода исследования толстой кишки, не требующего седации² [69]. Превосходство ВКЭ по сравнению с КТколонографией доказано в исследовании Spada C, et al. (2015) [70], и этот метод в последние годы всё чаще применяют для обследования толстой кишки.

ЖДА часто, в 5-12% случаев, встречается у молодых женщин, и основными факторами, способствующими этому, является ежемесячная потеря крови, особенно избыточная; повышенная потребность в пищевом железе во время беременности и грудного вскармливания; а также неадекватное несбалансированное питание, не позволяющее обеспечить физиологические потребности в железе.

Заболевания ЖКТ, лежащие в основе ЖДА, редко встречаются у молодых женщин, поэтому после скрининга на целиакию, которая встречается у 4% из них, дальнейшее обследование рекомендуется проводить в том случае, если имеются дополнительные клинические признаки, вызывающие озабоченность. К ним относятся:

- Возраст старше 50 лет поскольку возраст является сильным предиктором риска злокачественных новообразований при ЖДА.
- Женщины с отсутствием менструаций например, после гистерэктомии.
- Сопутствующие симптомы "тревоги", позволяющие предположить наличие опухоли [71].
- Признаки серьезного генетического риска патологии ЖКТ — например, КРР, поражающий двух родственников первой степени родства, или одного родственника первой степени родства, заболевшего в возрасте до 50 лет.
- Рецидивирующая или стойкая, как правило, тяжёлая ЖДА, которая, непропорциональна другим потенциальным причинам ДЖ, таким как менструальные потери.

Проведение исследования ЖКТ у беременных включают только ситуации с выраженной клинической необходимостью, когда польза для матери превышает потенциальный риск для плода. К таким показаниям относятся острые ЖКК, подозрение на тяжелую органическую патологию (например, опухоль, тяжелый колит), необходимость лечения варикозных вен пищевода у беременных с циррозом печени. В иных случаях обследование следует отложить и выполнить после родов. По показаниям может быть выполнена магнитнорезонансная (МР) энтерография (после первого триместра беременности) [72-75].

Проведение ЭГДС, по возможности следует проводить во втором триместре, когда риск для плода минимален. Безопасность эндоскопии у беременных подтверждена при строгом соблюдении ряда условий. Для минимизации рисков требуется мультидисциплинарный подход с обязательным участием акушера. Пациентку следует располагать в положении на левом боку или с наклоном таза влево для предотвращения компрессии нижней полой вены и аорты. При необходимости седации предпочтение отдается категории препаратов В или С по FDA — меперидину и пропофолу; бензодиазепины (например, мидазолам) следует ограничивать, особенно в первом триместре. Рутинный мониторинг сердцебиения плода и сокращений матки рекомендуется индивидуализировать в зависимости от срока гестации и ресурсов учреждения [72-75].

Данных о безопасности колоноскопии во время беременности недостаточно и из-за потенциаль-

ной возможности вызвать серьезные нежелательные явления ее выполнение следует рассматривать только по самым неотложным показаниям и по возможности проводить во втором триместре [75].

Подтвержденная ЖДА относительно нечасто встречается у молодых мужчин, но при её обнаружении рекомендуется использовать тот же алгоритм обследования, что и для пожилых людей.

Анемия часто встречается у пожилых людей, поражая >20% лиц старше 85 лет и >50% жителей домов престарелых. ДЖ и анемия у пожилых людей часто имеют многофакторную и комплексную этиологию. ДЖ, однако, является фактором, способствующим развитию анемии примерно в половине случаев, иногда связанным с дефицитом витамина В₁₂ и/или фолиевой кислоты. ДЖ у пожилых людей имеет много потенциальных причин, способствующих этому, включая неадекватное несбалансированное питание, снижение всасывания железа, скрытую потерю крови, медикаментозное лечение (например, ацетилсалициловой кислотой) и хронические заболевания (например, хроническая почечная недостаточность и ХСН). Потеря крови из-за повреждений слизистой оболочки ЖКТ может усугубляться одновременной антиагрегантной/антикоагулянтной терапией. У пожилых пациентов больше шансов, чем у молодых, иметь более одной причины развития ЖДА. При этом рекомендуется тщательно взвешивать риски и преимущества инвазивных эндоскопических и альтернативных исследований у пациентов с серьезными сопутствующими заболеваниями и/или гериатрическими синдромами (ГС).

Злокачественные и доброкачественные опухоли ВО и НО ЖКТ (таблица 6.1), способные вызывать ЖДА, в отличие от их ранних форм, как правило, не представляют значительных диагностических сложностей в случае высокой квалификации эндоскописта, применения качественной видеоаппаратуры и хорошей подготовки к проведению исследования.

Рак, безусловно, является наиболее серьезным заболеванием в развёрнутом дифференциально-диагностическом ряду и при обследовании всех женщин в постменопаузе и мужчин с ЖДА он обнаруживается в 8-10% случаев [59]. Но кровопотеря может быть обусловлена и доброкачественными новообразованиями, в частности изъязвлёнными субэпителиальными опухолями желудка или крупными аденомами и гамартомами толстой кишки.

Эрозивно-язвенные и сосудистые поражения ВО и НО ЖКТ (таблица 6.1), (рисунки 6.1-6.30) при всей внешне кажущейся простоте их обнаружения, нередко становятся камнем диагностического преткновения для эндоскопистов.

Достаточно сказать, что патологические изменения, которые обнаруживаются в процессе ВКЭ, уже после (!) выполнения ЭГДС и колоноскопии, нередко неоднократной, фактически находятся в пределах досягаемости "стандартной" эндоскопии у 10-28% пациентов [76]. Чаще всего при ЭГДС пропускаются язвы Кэмерона, расположенные на слизистой оболочке проксимальных участков желудка, вовлечённых в полость грыжи пищеводного отверстия диафрагмы (рисунок 6.13); сосудистые аномалии/мальформации высоко на малой кривизне желудка (рисунок 6.14); изолированные вены свода желудка; неверно интерпретируется эктазия сосудов антрального отдела желудка (GAVE-синдром) (рисунок 6.18). Аналогичным образом, сосудистые воспалительно-инфильтративные поражения могут быть пропущены, преимущественно в правой половине толстой кишки, особенно у пожилых людей и когда подготовка к исследованию была неадекватной.

ЖДА часто встречается после резекции или шунтирования желудка и/или тонкой кишки, включая бариатрическую хирургию, в частности "рукавную" резекцию желудка. Снижение потребления пищевых веществ и нарушение всасывания, вероятно, являются основополагающими механизмами развития ЖДА у оперированных пациентов и, следовательно, ЖДА в этих условиях может возникать в ассоциации с дефицитом других пищевых веществ, в частности витамина B₁₂ и фолатов. ЖДА встречается примерно у четверти пациентов через 2 года после шунтирования желудка по методу Ру, при этом значительно чаще она встречается у женщин, а также у пациентов с низким дооперационным уровнем запасов железа. Частота развития ЖДА после "рукавной продольной" резекции желудка ниже, по сравнению с шунтированием по Ру [77]. Однако перенесенная пациентом резецирующая, либо бариатрическая операция не повод для отказа от поиска других причин впервые выявленной ЖДА, в том числе раковой опухоли в культе резецированного желудка.

Атрофический гастрит, как аутоиммунный, так и вызванный Helicobacter pylori, является признанным фактором, способствующим развитию ЖДА, что связывают с нарушением всасывания железа — симптомом мальабсорбции, характерным для всех вариантов гипо-, ахлоргидрии, в том числе, медикаментозной, в частности на фоне длительного приёма ИПП. Считается, что персистирующая хеликобактерная инфекция также связана с риском развития ЖДА, хотя до конца неясно, связаны ли они напрямую или ЖДА служит следствием развития (суб)тотального атрофического гастрита и пептических язв слизистой оболочки [78].

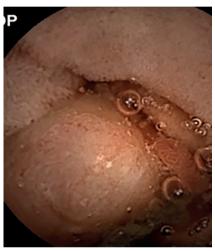
Таблица 6.1

Основные заболевания и патологические состояния— потенциальные причины ЖДА, которые могут быть обнаружены, либо верифицированы при инструментальном исследовании

Основной ме	ханизм ЖДА и проблема	Заболевания и патологические состояния		
		щевод, желудок, тонкая и толстая кишка)		
Хроническая кровопотеря	Опухоли	Рак желудка (рисунок 6.1); рак тонкой кишки (рисунок 6.2) редко Субэпителиальные опухоли желудка (рисунок 6.3) и тонкой кишки (рисунок 6.4) Нейроэндокринные опухоли желудка (рисунок 6.5) и тонкой кишки (рисунок 6.6) Лимфомы желудка и тонкой кишки (рисунок 6.7) Аденомы (рисунок 6.8) и полипозные синдромы (например, синдром Пейтца-Егерса, семейный аденоматозный полипоз и др.); рак толстой кишки (рисунок 6.9) чаще всего		
	Эрозивно-язвенные поражения	Пептические, ишемические, гормонально- и НПВС-индуцированные эрозии и язвы ВО (рисунок 6.10) и СО (рисунки 6.11, 6.12) ЖКТ Синдром Кэмерона (при хиатальной грыже) (рисунок 6.13) ВЗК, в частности язвенный колит, особенно активный (рисунок 6.14)		
	Сосудистые поражения	Ангиоэктазии, ангиодисплазии, сосудистые мальформации, варикозно расширенные вены ЖКТ (рисунки 6.15, 6.16, 6.17) GAVE-синдром (арбузный желудок) (рисунок 6.18) Диффузная кровоточивость на фоне приёма антикоагулянтов и антиагрегантов (рисунок 6.19); постлучевая проктопатия (рисунок 6.20) Хронический кровоточащий геморрой (рисунок 6.21)		
	Глистная инвазия	Например, анкилостомы (рисунок 6.22)		
Мальабсорбция	Резекция органа; шунтирующая операция	Резекция желудка или гастроэктомия (рисунки 6.23, 6.24) Шунтирующая желудок бариатрическая операция Резекция/шунтирование тонкой кишки		
	Атрофический гастрит	Аутоиммунный атрофический гастрит (рисунок 6.25) <i>H. pylori</i> — ассоциированный хронический гастрит (рисунок 6.26)		
	Медикаментозная гипохлоргидрия	Длительный приём ИПП. Одно из проявлений — очажки фовеолярной гиперплазии (рисунок 6.27)		
	Энтеропатии	Целиакия (глютеновая энтеропатия) (рисунок 6.28) Болезнь Крона (рисунок 6.29) НПВС-индуцированная энтеропатия (рисунок 6.30) Редкие формы (болезнь Уиппла; СИБР)		
		Мочеполовой тракт		
Гематурия	Опухоли	Почечно-клеточный рак		
	Нефрит; нефропатия	Хронический гематурический нефрит IgA-нефропатия		
	Конкременты	Мочекаменная болезнь		
Смешанный	Мультифакторная	Выраженные хронические заболевания почек		
Кровопотеря	Нефизиологические гинекологические	Злокачественные новообразования Миома матки		
	кровотечения	Эндометриоз		
Дыхательные пути и сердечно-сосудистая система				
Кровопотеря	Повторяющееся носовое кровотечение	Геморрагические диатезы (наследственная геморрагическая телеангиэктазия, тромбоцитопеническая пурпура)		
	Кровохарканье	Опухоли бронхолёгочной системы Туберкулёз лёгких Изолированный лёгочный сидероз		
Смешанный	Мультифакторная	Хроническая сердечная недостаточность		
стешаттым	тультифакторнал	протитеская серде так педостато тость		

Сокращения: ВЗК — воспалительные заболевания кишечника, ВО — верхний отдел, ЖДА — железодефицитная анемия, ЖКТ — желудочно-кишечный тракт, ИПП — ингибиторы протонной помпы, НПВС — нестероидное противовоспалительное средство, СИБР — синдром избыточного бактериального роста в тонкой кишке, СО — средний отдел.

В многочисленных исследованиях и метаанализах было показано, что лечение инфекции *H. pylori* в сочетании с заместительной терапией железом приводит к более выраженному повышению концентрации гемоглобина и СФ по сравнению с монотерапией препаратами железа [79-82].


Современные эндоскопические методы позволяют достоверно выявлять атрофию слизистой оболочки желудка, однако окончательное подтверждение диагноза требует морфологического исследования биоптатов по системам OLGA (Operative Link for Gastritis Assessment of Atrophic

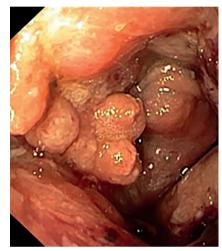


Рис. 6.1. Эндофотография в белом и узком спектре света. Рак субкардиального отдела желудка — умереннодифференцированная аденокарцинома с инвазией в глубокие отделы подслизистого слоя.

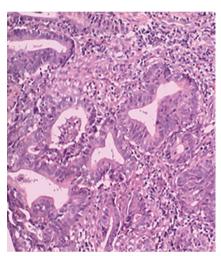


Рис. 6.2. Умеренно-дифференцированная аденокарцинома тощей кишки. ВКЭ, БАЭ, гистологическое исследование операционного материала (гематоксилин-эозин, x 20).

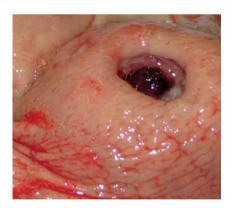


Рис. 6.3. Субэпителиальные опухоли желудка — гастроинтестинальная стромальная опухоль с изъязвлением и фиксированным сгустком крови в кратере изъязвления.

Рис. 6.4. Субэпителиальная опухоль подвздошной кишки— лейомиома. Диагностирована при ВКЭ. Лапароскопически резецированный сегмент подвздошной кишки с опухолью.

Рис. 6.5. Нейроэндокринные опухоли желудка.

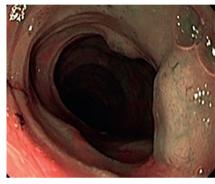


Рис. 6.6. Множественные нейроэндокринные опухоли подвздошной кишки (ВКЭ; БАЭ; лапароскопические резецированный сегмент подвздошной кишки с опухолями).

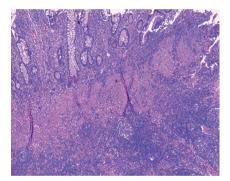


Рис. 6.7. MALT–лимфома тонкой кишки (БАЭ; участок подвздошной кишки с утолщенной и инфильтрированной стенкой; гистологическое исследование операционного материала (гематоксилин–эозин, x 20).

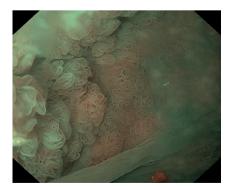


Рис. 6.8. Гигантская тубулярноворсинчатая аденома купола слепой кишки.

Рис. 6.9. Распространённый рак толстой кишки. Аденокарцинома сигмовидной ободочной кишки. Аденокарцинома восходящей ободочной кишки.

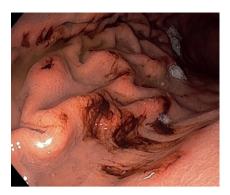
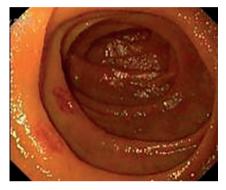



Рис. 6.10. Язва привратника. Язва антрального отдела желудка. Эрозивно-геморрагическая гастропатия.

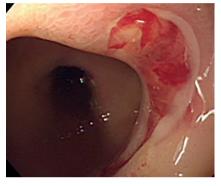


Рис. 6.11. НПВС-индуцированный эрозивный энтерит и язва тощей кишки с налётом крови.

Рис. 6.12. Язва энтеро-энтероанастомоза после резекции тонкой кишки.

Рис. 6.13. Синдром Кэмерона не отчётливо видна в складках проксимальных отделов желудка, находящихся в составе гигантской рецидивной хиатальной грыжи. При прицельном поиске видна небольшая язва с достаточно крупным тромбированным сосудом.

Рис. 6.14. Язвенный колит.

Рис. 6.15. Ангиоэктазии желудка.

Рис. 6.16. Венозная мальформация тонкой кишки.

Рис. 6.17. Ангиоэктазия купола слепой кишки.

Рис. 6.18. GAVE-синдром.

Рис. 6.19. Геморрагическая гастропатия (без эрозий).

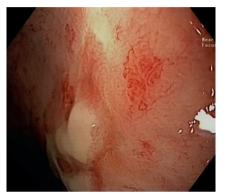


Рис. 6.20. Постлучевая прокто-сигмоидопатия.

я прокто сигмоидопатия.

Рис. 6.21. Кровоточащий геморрой. Ретроградный осмотр.

Рис. 6.22. Глистная инвазия, выявленная при ВКЭ.

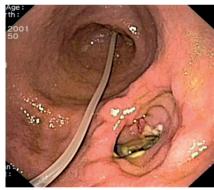


Рис. 6.23. Гастроэнтероанастомоз.

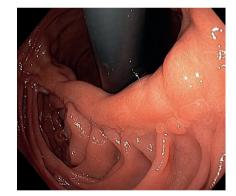


Рис. 6.24. Гастроэнтероанастомоз после резекции желудка по Ру.

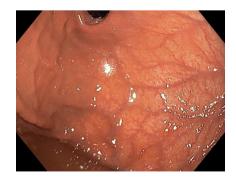


Рис. 6.25. Аутоиммунный атрофический гастрит.

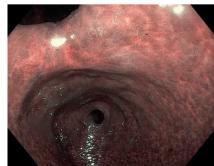


Рис. 6.26. *H. pylori* — ассоциированный хронический гастрит.

Рис. 6.27. Очаги фовеолярной гиперплазии в своде желудка.

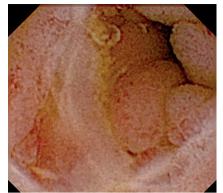


Рис. 6.28. Целиакия. Классическая и рефрактерная форма.

Рис. 6.29. Болезнь Крона тонкой кишки.

Gastritis)/OLGIM (Operative Link on Gastritic Intestinal Metaplasia assessment). Для получения надёжных результатов рекомендуется брать не менее четырёх биоптатов (по малой и большой кривизне в теле и антральном отделе желудка). Дополнительная биопсия из угла желудка способна повысить диагностическую ценность, хотя формально не является обязательной⁵.

Целиакия обнаруживается в 3-5% случаев ЖДА [83], соответственно, рутинно рекомендуется проводить диагностику/исключение этого заболевания серологически или при помощи биопсии тонкой (ДПК) кишки во время гастроскопии во всех возрастных группах. Пациентам молодого возраста, у которых риск развития онкологических заболеваний низкий, а риск наличия целиакии выше, достаточно выполнить серологические тесты. В случае положительного результата рекомендовано выполнение ЭГДС с проведением щипцовой биопсии из луковицы и постбульбарных отделов ДПК в количестве не менее 4-6 биоптатов [59, 84]. Биопсия остается "золотым стандартом" для исключения или подтверждения диагноза целиакии и её необходимо выполнять даже в том случае, если по эндоскопической картине характерного изменения слизистой оболочки тонкой кишки (укорочение ворсинок; рисунок в форме "морского гребешка") не выявлено. У пациентов пожилого возраста чувствительность серологических тестов на целиакию ниже, поэтому им рекомендовано выполнение ЭГДС с биопсией из ДПК в любом случае [59].

Исследование тонкой кишки и мочевыводящих путей рекомендуется проводить в тех случаях, когда причину ЖДА/источник кровопотери в ВО и НО ЖКТ, после полноценного, квалифицированно проведенного эндоскопического исследования, найти не удаётся, а также при неадекватном ответе на заместительную терапию пре-

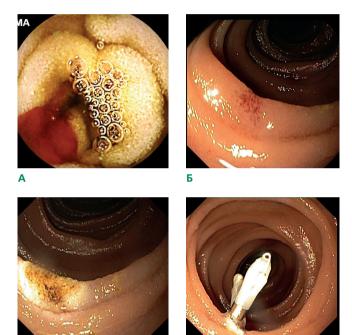


Рис. 6.30. Сосудистая мальформация (ангиоэктазия) — источник рецидивных тонкокишечных кровотечений: A — ВКЭ: признаки продолжающегося кровотечения в тощей кишке; Б — БАЭ: ангиоэктазия, без признаков кровотечения на момент осмотра; В — аргоно-плазменная коагуляция; Г — клипирование.

паратами железа (рефрактерная ЖДА), либо при рецидивирующей ЖДА.

Почти все современные алгоритмы обследования пациентов с подозрением на тонкокишечное кровотечение не поддерживают идею рутинного выполнения повторной ЭГДС и колоноскопии всем пациентам без исключения, но рекомендуют выполнить их перед проведением ВКЭ, если предыдущее эндоскопическое исследование невозможно считать полноценным по одному или нескольким критериям или если с момента последней

⁵ Клинические рекомендации "Гастрит и дуоденит". 2024. https://cr.minzdrav. gov.ru/preview-cr/708_2.

ЭГДС/колоноскопии прошел значительный промежуток времени.

Эндоскопическое исследование тонкой кишки (интестиноскопию) [58, 64] у пациентов с ЖДА целесообразно провести с использованием метода ВКЭ, поскольку она очень чувствительна к КТ/ МР-негативным поражениям слизистой оболочки. КТ/МР энтерография может быть рассмотрена в тех случаях, когда ВКЭ не может быть выполнена, а также как дополнительные исследования при оценке воспалительных и опухолевых заболеваний тонкой кишки.

Большинство поражений тонкой кишки, лежащих в основе ЖДА, представляют собой деликатные сосудистые или воспалительные изменения, которые невозможно обнаружить с помощью обычной радиологии. КТ-энтерография, однако, играет определенную роль в разграничении опухолей тонкой кишки, выявленных при ВКЭ, а комбинация артериальной и венозной фаз полезна для характеристики сосудистых опухолей тонкой кишки и выявления метастазов. Кроме того, конечно, КТ-энтерография может выявить признаки других неоплазий, лежащих в основе ЖДА, таких как лимфома или опухоли мочевых путей. Метаанализ показал, что КТ-энтерографию, ВКЭ и баллонно-ассистированную энтероскопию (БАЭ) лучше всего рассматривать как взаимодополняющие исследования [85].

В случае подозрения на обструкцию ЖКТ перед ВКЭ рекомендовано выполнение КТ/МР-энтерографии. Развитие КТ-энтерографии улучшило визуализацию патологических изменений тонкой кишки, однако для лучшей дифференциальной диагностики кишечных структур требуется расправление просвета кишки [86]. При сравнении КТ-энтерографии с ВКЭ в диагностике как ЖДА, так и явных тонкокишечных кровотечений, зарубежные коллеги получили разные результаты. В одном случае эффективность КТ-энтерографии была ниже ВКЭ (30,1% vs 57,7%, соответственно) [87], в другом — выше эффективности ВКЭ (88% vs 38%, соответственно) [88]. Это связано с тем, что с помощью КТ-энтерографии невозможно выявить эрозивноязвенные поражения и сосудистые мальформации, зато можно выявить опухоли, особенно с интраорганным компонентом [86].

Исследование пассажа бария по тонкой кишке становится все более редким в клинической практике, так как диагностическая ценность данного метода невелика и составляет 5-10% у пациентов с подозрением на скрытые тонкокишечные кровотечения, проявляющиеся ЖДА [57, 86].

Противопоказаниями к проведению ВКЭ являются: клиническая картина и/или результаты предварительного обследования, свидетельствующие

о наличии кишечной непроходимости, стриктур и свищей тонкой кишки; нарушение глотания; беременность; планируемая МР томография [89]. Седация пациентов при проведении ВКЭ не требуется. Исключение составляют отдельные случаи, когда видеокапсулу необходимо низвести непосредственно в просвет ДПК с использованием гастроскопа.

Диагностическая ценность ВКЭ при ЖДА после отрицательных результатов ЭГДС и колоноскопии варьирует от 30 до 92,3% для выявления любых патологий тонкой кишки, и 17-42% — для выявления таких поражений как ангиоэктазии, язвы, опухоли и воспалительные изменения [59, 66, 90, 91]. Наиболее частыми источниками тонкокишечных кровотечений, по данным европейских исследований, являются сосудистые мальформации, болезнь Крона и НПВС-индуцированные энтеропатии [59, 92]. По данным отечественных исследований, наиболее частыми источниками ЖДА являются сосудистые поражения, опухоли и эрозивно-язвенные поражения тонкой кишки [89, 93, 94].

В случае отрицательного результата ВКЭ, выполненной с приемлемым качеством, рекомендуется рассмотреть вопрос о дальнейшем исследовании ЖКТ только в том случае, если после заместительной терапии препаратами железа ЖДА не удаётся скорректировать [59, 66]. Возможность рецидива кровотечения после негативной ВКЭ относительно невысока, однако ВКЭ в определённом проценте случаев способна пропустить опухоли тонкой кишки, как и другие её поражения. Показаниями к дополнительному обследованию тонкой кишки после отрицательных данных ВКЭ может быть дальнейшее падение концентрации гемоглобина более чем на 40 г/л и появление клиники явного, а не оккультного (скрытого) кровотечения [95].

В случае обнаружения при ВКЭ патологии, требующей морфологической верификации диагноза и/или элиминации источника кровотечения, может быть применен метод БАЭ, обладающий высокой информативностью в диагностике заболеваний тонкой кишки [57-59]. Инструментальноассистированная энтероскопия позволяет проводить глубокую интубацию тонкой кишки и осмотреть её на всём протяжении от связки Трейца до баугиниевой заслонки, а также предоставляет возможность проведения эндоскопической биопсии и/или терапии, но это инвазивная процедура, и необходимость в ней должна определяться результатами ВКЭ. Как и следовало ожидать, диагностический результат БАЭ значительно выше, если ей предшествует положительная ВКЭ, а не отрицательная.

БАЭ в первую очередь возможно выполнить при появлении массивного явного кровотечения [66].

Также БАЭ в первую очередь следует выполнять в случае измененной анатомии ЖКТ у пациентов после резецирующих и реконструктивных операций (например, гастрэктомии с эзофагоэнтероанастомозом и энтероэнтероанастомозом по Ру), поскольку приводящая петля тощей кишки недоступна для осмотра видеокапсулой [57].

Ограничениями, которые могут воспрепятствовать полноценному выполнению БАЭ, являются: анатомический вариант развития тонкой кишки с "острыми изгибами"; вовлечение и грубая деформация тонкой кишки спаечным процессом, в связи с ранее перенесенными, как правило, объемными операциями на органах брюшной полости; опухолевые, рубцовые и воспалительночифильтративные стриктуры тонкой кишки; выраженное варикозное расширение вен пищевода; неадекватное обезболивание и медикаментозное обеспечение исследования; плохая подготовка пациента к исследованию.

В случае верификации сосудистых мальформаций, по данным ВКЭ и/или БАЭ, рекомендован эндоскопический гемостаз путем аргоно-плазменной коагуляции и/или клипирования (рисунок 6.30), в случае невозможности его проведения — заместительная терапия препаратами железа [58, 59].

В случае подозрения на опухоль тонкой кишки, рекомендовано выполнять лучевые методы (КТ/ МР энтерографию) и/или БАЭ с биопсией, при подозрении на болезнь Крона — БАЭ с биопсией [58].

Таким образом, инструментальная диагностика играет существенную роль в нозологической диагностике, выборе рациональной лечебно-диагностической тактики и в итоге в оказании высокоэффективной медицинской помощи пациентам с ЖДА.

Раздел 7. Влияние железодефицитных состояний на здоровье матери и ребенка. Подходы к обследованию на наличие железодефицитных состояний у женщин, планирующих беременность, беременных и женщин в послеродовом периоде

ЖДА стоит на первом месте по частоте встречаемости у женщин детородного возраста. До 40% женщин репродуктивного возраста вне беременности имеют сниженные запасы железа в организме, т.е. начальные явления ДЖ² [96].

У женщин снижение запасов железа, в первую очередь, связано с репродуктивной функцией (менструальный цикл, периоды беременности и лактации). Нередко особенности питания и сопутствующие заболевания ЖКТ являются дополнительными причинами анемии. Также известны другие причины анемии, требующие исключения

при планировании терапии анемии: хронические заболевания, в первую очередь, воспалительные процессы, патология щитовидной железы, последствия перенесенных оперативных вмешательств, значительно снижающих резервы усвоения пищевых веществ⁶ [96].

Потребность в железе варьирует в течение жизни женщины, особенно важно его адекватное удовлетворение в репродуктивном возрасте. Регулярный менструальный цикл создает дополнительную потребность в железе. Во время беременности женщине необходимо дополнительно 500-1000 мг железа вследствие увеличения объема плазмы и массы эритроцитов, а также ввиду нарастающих потребностей плода. Потребности в железе во время беременности прогрессивно растут, достигая 10-кратного повышения к третьему триместру по сравнению с первым⁶.

Потребности в железе женщин в период беременности в I-ом триместре — 18 мг/сут., во II-ом и III-ем триместрах — 33 мг/сут., в период кормления грудью — 18 мг/сут.³.

Беременность, лактация, а также аномальные маточные кровотечения, значительно повышающие расход железа, не могут быть восполнены пищей и приводят к истощению запасов железа в организме⁶ [96].

ДЖ и анемия являются важными факторами риска как для матери, так и для плода. ЖДА связана с более высокими показателями преждевременных родов, низкой массы тела ребенка при рождении и новорожденных с малым весом для гестационного возраста, а впоследствии задержки физического и умственного развития, частой заболеваемости новорожденных [97].

Риски для матери включают: материнскую смертность, в основном в результате послеродового кровотечения, снижение физической и умственной работоспособности, а также повышение вероятности трансфузии компонентов донорской крови во время и после родов [11, 98].

Негативное влияние ДЖ во время беременности включает повышение восприимчивости к инфекциям, риск акушерских кровотечений, а соответственно, и вероятную потребность в трансфузиях компонентов донорской крови. Также исследователи отмечают повышение вероятности послеродовых кровотечений и риска смерти от них [99-101].

Негативное влияние ЖДА может также заключаться в нарушении взаимодействия матери, страдающей ЖДА и испытывающей слабость или депрессию, и новорожденного. Кроме того, дети,

de Benoist B, McLean E, Egli I, Cogwell M, editors. Worldwide prevalence of anemia 1993-2005. WHO global database on anemia. Geneva: World Health Organization; 2008 http://apps.who.int/iris/bitstream/10665/43894/1/ 9789241596657_eng.

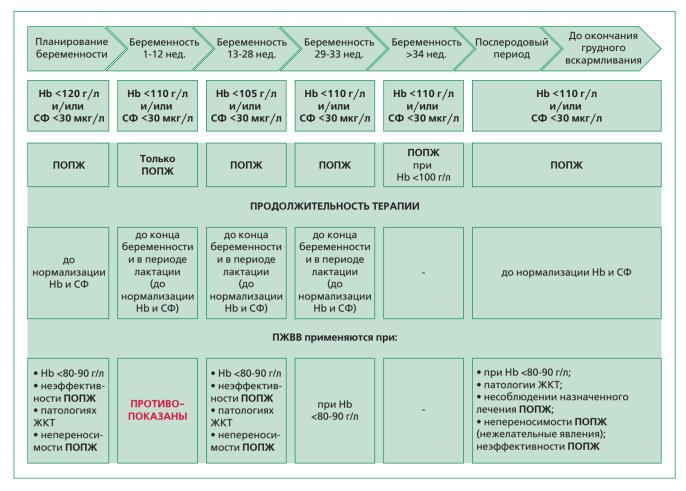


Рис. 7.1. Концентрация гемоглобина и СФ и принципы коррекции ЖДА во время беременности и в послеродовом периоде. Сокращения: ЖКТ — желудочно-кишечный тракт, ПЖВВ — препараты железа для внутривенного введения, ПОПЖ — пероральные препараты железа, СФ — сывороточный ферритин, Hb — гемоглобин.

с раннего возраста страдающие ЖДА, демонстрируют сниженные умственные способности, нарушения двигательного развития и социально-эмоциональной адаптации при оценке в динамике до подросткового возраста [102, 103].

Снижение лактации и сокращение периода кормления неизбежны при развитии послеродовой анемии. Послеродовая депрессия также значительно чаще регистрируется среди женщин с послеродовой ЖДА [104].

Особенности диагностики ЖДС у беременных и женщин в послеродовом периоде:

Особенности превентивной стратегии состоят в выделении групп риска и рутинном мониторинге лабораторных показателей.

Лабораторные исследования обязательны для подтверждения диагноза ЖДА. Ключевым тестом для современной диагностики ЖДС является СФ и расчёт HTЖ⁷ [105, 106].

Рекомендовано направлять беременную пациентку на проведение ОАК при 1-м визите, во II-м и в III-м триместрах беременности⁸, а также в любое время во время беременности, если есть симптомы анемии [105].

По определению ВОЗ, анемией при беременности принято считать снижение концентрации гемоглобина <110 г/л в I и III триместре. Ввиду увеличения объема плазмы во втором триместре беременности предложено считать анемией для данного срока снижение концентрации гемоглобина <105 г/л. В послеродовом периоде анемией принято считать снижение концентрации <110 (в течение 1-ой нед. после родов) и <120 г/л (через 8 нед. после родов)⁷ (рисунок 7.1).

Особенности лечения ЖДС у беременных и женщин в послеродовом периоде:

При анемии легкой степени (гемоглобин >90 г/л) показана терапия ПОПЖ. Такое же лечение приме-

Сухих Г.Т., Серов В.Н., Адамян Л.В. и др. Клинические рекомендации РФ (протокол). Кровесберегающие технологии в акушерской практике. 2014. https://docs.cntd.ru/document/456026465.

Клинические рекомендации "Нормальная беременность". 2023. https:// cr.minzdray.gov.ru/preview-cr/288 2.

няют при истощении запасов железа на начальных этапах беременности (концентрация СФ <30 мкг/л) при отсутствии анемии, поскольку в период беременности потребность в железе возрастает⁷.

Рекомендуется оценивать эффективность назначенной пероральной терапии (концентрация гемоглобина должна повыситься на 10 г/л к концу 4-й нед. от начала приема ПОПЖ)⁷ [105].

Переход на препараты железа для внутривенного введения (ПЖВВ), начиная со II триместра беременности и в послеродовом периоде:

- при отсутствии эффекта от терапии ПОПЖ (повышение концентрации гемоглобина менее чем на 10 г/л к концу 4-й нед. от начала лечения);
- при плохой переносимость ПОПЖ (нежелательные явления со стороны ЖКТ);
 - в сроке беременности >34 нед.;
 - при выраженном анемическом синдроме;
- при снижении концентрации гемоглобина <80 г/л⁷ [1, 105, 106].

Раздел 8. Подходы к выявлению и коррекции железодефицитных состояний в гериатрической практике

Пожилой возраст характеризуется развитием возраст-ассоциированных заболеваний и ГС, что определяет способность к самообслуживанию и независимости от посторонней помощи, качество и прогноз жизни человека [107]. Ряд исследований относят анемию к ГС [108, 109]. ГС — многофакторное возраст-ассоциированное клиническое состояние, ухудшающее качество жизни, повышающее риск неблагоприятных исходов (смерти, зависимости от посторонней помощи, повторных госпитализаций, потребности в долгосрочном уходе) и функциональных нарушений9. Анемию можно отнести к возраст-ассоциированному состоянию, так как ее распространенность увеличивается до 40% в общей популяции пожилых людей, до 70% у лиц, проживающих в домах престарелых и до 80% у госпитализированных пациентов. Необходимо отметить, что при старении изменяется соотношение женщин и мужчин, имеющих низкий гемоглобин. В молодом возрасте преобладают женщины, а с 70-75 лет — мужчины. Наибольшая распространенность анемии наблюдается у лиц старше 80 лет [110-115]. В РФ по данным крупного многоцентрового исследования ЭВКАЛИПТ частота анемии у лиц пожилого возраста составляет 23,9%, увеличиваясь до 35,6% в возрасте 85 лет и старше [116].

Анемия ухудшает гериатрический статус, утяжеляя течение уже имеющихся ГС или приводя к возникновению новых. Показано, что сниже-

ние гемоглобина повышает риск развития старческой астении, недостаточности питания (мальнутриции), умеренных когнитивных нарушений, деменции, депрессии, делирия и нарушений сна [117-122]. Анемия приводит к прогрессированию функциональных нарушений у пожилых людей, снижению базовой и инструментальной активности, скорости ходьбы. Пациенты хуже выполняют тест "Встань и иди", кистевую динамометрию, а также краткую батарею тестов физического функционирования [123-127]. Анемия ассоциирована с саркопенией, низкой физической активностью, высокой частотой падений, в том числе повторных [128-130]. Снижение гемоглобина увеличивает риск развития любых переломов, и, в частности, проксимального отдела бедренной кости и тел позвонков, при чем, независимо от снижения минеральной плотности кости и потери костной массы [131, 132]. Доказано, что при снижении гемоглобина уменьшается физическая активность, мобильность, и анемия является независимым предиктором кинезиофобии, в связи, с чем пациенты перестают выходить на улицу, меньше передвигаются по жилищу и хуже выполняют свою привычную деятельность [133, 134]. Это еще больше ухудшает их функциональный и когнитивный статус, а также негативно влияет на социальную активность и качество жизни пожилого человека [124, 135].

Анемия в пожилом возрасте ассоциирована и с коморбидной патологией. У пациентов с анемией индекс коморбидности Charlson выше, с другой стороны, при увеличении значений индекса Charlson на каждый 1 балл шансы иметь анемию возрастают на 21%, а у пациентов с индексом Charlson ≥5 баллов шансы выше в 2 раза. Независимыми предикторами наличия анемии являются перенесенный инфаркт миокарда, инсульт, фибрилляция предсердий (ФП), язвенная болезнь желудка и/или ДПК, хроническая болезнь почек (ХБП) С4 и 5, онкологическое заболевание [116].

Кроме всего перечисленного, анемия повышает риск смерти у пожилых пациентов, как от любой причины, так и от кардиоваскулярных и онкологических заболеваний [136]. При этом в ряде исследований показана обратная зависимость между тяжестью анемии и риском смерти — чем ниже концентрация гемоглобина, тем выше риск смерти [137-139].

Таким образом, анемия для пожилых людей — значимый фактор развития и прогрессирования большинства ГС, ухудшения функционального и когнитивного статуса, качества жизни и способности к самообслуживанию. В связи, с чем анемию необходимо рассматривать не только как самостоятельную нозологию или осложне-

⁹ Клинические рекомендации "Старческая астения". 2024. https://cr.minzdrav. gov.ru/preview-cr/613_2.

ние какого-либо соматического заболевания, но и как ГС.

Самой распространенной анемией у лиц пожилого возраста является ЖДА [140, 141]. Лабораторная диагностика ЖДА в пожилом возрасте не отличается от других возрастных групп (см. раздел 5). Однако причины ЖДА у пациентов пожилого и старческого возраста имеют свои особенности.

Наиболее частая причина ЖДА в пожилом и старческом возрасте — хроническая кровопотеря. Нередко такие кровотечения минимальны по объему и не имеют никакой симптоматики, в связи, с чем не замечаются пациентом, а потому существуют длительно, пока анемия не проявится клинически — гипоксическим и сидеропеническим синдромами. Лидирующие источники кровопотери — органы ЖКТ. У людей пожилого возраста, зачастую имеющих ряд коморбидных состояний (кардиоваскулярные заболевания, хронический болевой синдром вследствие дегенеративных изменений суставов и позвоночника и др.), наиболее частой причиной развития кровопотери из органов ЖКТ становится прием лекарственных препаратов из групп антиагрегантов, антикоагулянтов, НПВС, глюкокортикоидов [140, 141]. Нередко для гастропротекции совместно с вышеперечисленными препаратами назначаются ИПП, прием которых приводит к снижению кислотности в желудке, в результате чего уменьшается всасывание трехвалентного железа и в последствие развивается ЖДА [142].

Не менее значимыми источниками кровопотери из органов ЖКТ в пожилом возрасте являются злокачественные новообразования желудка и толстого кишечника. Опухоли в тонкой кишке локализуются крайне редко, их исключение следует выполнять при отрицательных результатах ЭГДС и колоноскопии. Еще одной причиной кровопотери могут быть сосудистые мальформации кишечника (геморрагические телеангиоэктазии, артериовенозные мальформации, синдром Хейда и др.) [143]. Маточные кровотечения, макрогематурия вследствие заболеваний предстательной железы, почек и мочевыводящих путей также могут приводить к развитию ЖДА у лиц пожилого возраста.

Таким образом, выявление ЖДА у лиц старшей возрастной группы в первую очередь является поводом для тщательного обследования с целью выявления источника кровотечения.

К ЖДА может приводить синдром недостаточность питания (мальнутриции) — патологическое состояние, обусловленное несоответствием поступления и расхода питательных веществ, приводящее к снижению массы тела и изменению компонентного состава организма, уменьшению физиче-

ского и умственного функционирования, а также к ухудшению прогноза¹⁰. В контексте гериатрической практики термин мальнутриция используется как синоним термина "недостаточность питания". Причины мальнутриции у лиц пожилого возраста многообразны. Серьезной ситуацией, сопровождающейся нарушением жевания и глотания, уменьшением объема принимаемой пищи и в последствие ЖДА, являются стоматологические проблемы (полное или частичное отсутствие зубов, неправильно подобранные зубные протезы и др.). Исследование, включившее 1256 человек в возрасте 60 лет и старше, показало, что распространенность ЖДА выше почти в 2 раза у лиц, которые сократили потребление пищи из-за жалоб на жевание и глотание [144]. Мальнутрицию в пожилом возрасте также вызывают снижение аппетита, изменения вкусового и обонятельного рецепторных аппаратов, прием некоторых лекарственных препаратов, нарушение когнитивных функций, депрессия. Немалую роль в прогрессировании мальнутриции играют социальные проблемы (бедность, социальная изоляция), приводящие к исключению дорогостоящих пищевых продуктов и зависимости от посторонних лиц (родственники, сиделка, социальный работник) в выборе продуктового набора. Все это приводит к изменению рациона и объема питания, пища становится менее разнообразной, иногда полностью исключаются некоторые продукты (мясо, рыба, печень, фрукты). Особенно нежелательно исключение продуктов питания животного происхождения, так как они содержат в большем количестве белок и железо, которое к тому же лучше всасывается, чем при использовании продуктов растительного происхождения.

Еще одной причиной ЖДА у лиц пожилого возраста является синдром мальабсорбции — комплекс расстройств, связанный с нарушением всасывания в тонкой кишке нутриентов, витаминов и микроэлементов, в том числе и железа. Мальабсорбция в пожилом возрасте может быть следствием перенесенных операций на тонкой кишке, энтеритов различной этиологии и нарушений микробиоты [145]. Кроме того, снижают всасывание железа продукты, богатые кальцием, а также препараты кальция — одна из составляющих базисной терапии остеопороза. В связи с этим необходимо рекомендовать принимать продукты, богатые железом и кальцием, или препараты железа и кальция в разное время и лучше с интервалом не менее 4 ч [146].

Недооцененной причиной ЖДА является инфекция *H. pylori*, распространенность которой в пожи-

Клинические рекомендации "Недостаточность питания (мальнутриция) у пациентов пожилого и старческого возраста". 2025. https://cr.minzdrav.gov.ru/preview-cr/615_2.

лом возрасте увеличивается [147]. *Н. pylori* использует для своей жизнедеятельности железо, снижает концентрацию витамина С, повышающего всасывание железа, а также провоцирует образование микроэрозий слизистой оболочки желудка и тонкой кишки, которые могут быть источником хронической кровопотери. Это приводит к ЛДЖ, а позднее к ЖДА.

Существует взаимосвязь между дисбиозом кишечника и ЖДА. Современные исследования демонстрируют двунаправленное взаимодействие между состоянием кишечной микробиоты и метаболизмом железа. ЖДА ассоциируется с изменениями в составе кишечной микробиоты, включая снижение разнообразия и изменение соотношения основных бактериальных таксонов, что подтверждено как в клинических исследованиях на людях, так и в экспериментальных моделях. Таким образом, взаимосвязь между нарушением состава микробиома кишечника и ЖДА представляется клинически значимой и подтверждается результатами современных исследований. В перспективе, модификация микробиома кишечника посредством применения пробиотиков, пребиотиков, трансплантации фекальной микробиоты, или других методов, может рассматриваться в качестве вспомогательного подхода к лечению ЖДА [148, 149].

Кроме того, патологическое старение с развитием ГС характеризуется избыточным синтезом провоспалительных цитокинов (ИЛ-6, фактор некроза опухоли-α) и описывается термином "inflammaging" [150]. Повышенная секреция ИЛ-6 продемонстрирована при старческой астении, саркопении, болевом синдроме, синдроме падений, болезни Альцгеймера и депрессии [151-155]. Как известно, избыточный синтез провоспалительных цитокинов способствует увеличению синтеза в печени гепсидина, который блокирует функцию ферропортина (экспортер железа из энтероцитов, гепатоцитов и макрофагов). В результате останавливается всасывание железа энтероцитами ДПК, замедляются процессы высвобождения железа из клеток-депо и рециркуляции железа макрофагами, что снижает доступность железа для эритропоэза т.е., механизм развития анемии при патологическом старении такой же, как при АХЗ.

Таким образом, у пациентов в возрасте старше 60 лет может быть несколько факторов, обусловливающих развитие ЖДА. Для адекватного лечения ЖДА необходимо диагностировать и устранить причину, приведшую к ее развитию. В некоторых случаях (у ослабленных пациентов с тяжелой коморбидностью, выраженной старческой астенией, нуждающихся в посторонней помощи), при на-

личии лабораторных признаков ДЖ допускается начало лечения без предварительных инвазивных (эндоскопических) исследований [156].

Терапия ЖДА в пожилом возрасте также имеет некоторые особенности.

К ним относится, во-первых, плохая переносимость гемической гипоксии, с которой связана быстрая декомпенсация коморбидных соматических заболеваний и прогрессирование ГС. Это обусловливает необходимость коррекции даже легкой анемии у данной категории пациентов. Приоритетом в терапии являются трехвалентные препараты железа. В случае патологического старения, смешанного генеза анемии — необходимо применение ПЖВВ. Во-вторых, у пожилых пациентов не всегда возможно устранить причину ЖДА, в связи, с чем требуется длительная ферротерапия, а значит, препарат железа должен быть не только эффективным и безопасным, но и хорошо переноситься пожилым человеком и иметь минимальный спектр лекарственных взаимодействий. В-третьих, нередко анемия диагностируется уже при значительном снижении гемоглобина, так как ее неспецифические симптомы в ряде случаев трактуются как проявления коморбидной патологии или ГС. Значительное снижение гемоглобина требует его восполнения за короткий срок. В этом случае препаратами выбора являются ПЖВВ.

В заключении хочется подчеркнуть, что анемия является одним из немногих полностью модифицируемых факторов риска в пожилом возрасте. При этом значение снижения гемоглобина в клинической практике недооценено. Тогда как регулярный скрининг анемии у пожилых людей позволит не только снизить вероятность развития и прогрессирования соматических заболеваний и ГС, но и улучшить качество и продолжительность жизни пожилого населения.

Раздел 9. Железодефицитная анемия в гастроэнтерологической практике: дифференциальная диагностика и аспекты лечения

9.1. Патология органов пищеварения как причина железодефицитной анемии

Все причины ЖДА со стороны ЖКТ условно можно разделить на 2 группы: вследствие кровопотери и вследствие нарушения всасывания железа² [12, 13, 38, 157, 158]. Отдельно необходимо отметить такую причину ЖДА, как следствие недостаточного поступления железа с пищей у лиц, придерживающихся вегетарианской или веганской диеты. Данный факт необходимо учитывать при сборе анамнеза у пациента с ЖДА и ЛДЖ.

Таблица 9.1

Классификация и определение ЖКК

Желудочно- кишечное кровотечение	Типичное проявление (симптомы кровопотери)	Определение	
Явное	Гематемезис	Рвота "кофейной гущей" ярко-красной или темной кровью	
	Мелена	Черный, дегтеобразный стул с неприятным запахом	
	Гематохезия	Ярко-красный или темно-бордовый, кровавый стул	
Оккультное (скрытое)	ЖДА и/или положительный анализ кала на скрытую кровь	т Гемоглобин <130 г/л у мужчин и <120 г/л у женщин. Часто с низким MCV <80 фл.	
		Отсутствие явного кровотечения с наличием крови в стуле по данным гваякового теста или иммунохимического исследования	
Кровотечение с неустановленным источником	Рецидивирующее или однократное, явное или скрытое, согласно вышеуказанным признакам, но источник которого не обнаружен после всестороннего обследования ВО, СО и НО ЖКТ		

Сокращения: ВО — верхний отдел, ЖДА — железодефицитная анемия, ЖКТ — желудочно-кишечный тракт, НО — нижний отдел, СО — средний отдел, MCV — средний объем эритроцита.

ЖДА вследствие кровопотери из ЖКТ

Незначительная кровопотеря из ЖКТ в объеме 0,5-1,5 мл/сут. является нормой и не визуализируется. Когда из ЖКТ теряется большее количество крови, а организм не восполняет ее в достаточной мере, с течением времени может развиться ЛДЖ, а затем — ЖДА.

Ежегодные госпитализации по поводу ЖКК выявляются с частотой 150 больных на 100 тыс. населения и летальностью от 5-10%. Кровотечения из ВО ЖКТ встречаются примерно в 3 раза чаще, чем кровотечения из НО ЖКТ [159, 160].

В зависимости от степени и темпа кровопотери выделяют следующие варианты ЖКК: *явное* и скрытое (оккультное) (таблица 9.1) [159].

При потере больших объемов крови (100-200 мл и более) ЖКК становится *явным* и в стуле может появляться неизмененная кровь.

Если у пациента развиваются симптомы анемии, но нет признаков явного ЖКК, поиск источника может привести к диагностике *скрытого* (оккультного) варианта кровотечения. ~37% кровотечений из ВО ЖКТ составляют скрытые ЖКК [159-162].

Скрытое ЖКК определяется как любое кровотечение из гастроинтестинальной зоны, которое проявляется в виде положительных результатов в виде скрытой фекальной крови, невидимой пациенту или врачу, и/или ЖДА. Хроническая потеря крови со стороны ЖКТ в количестве 5-10 мл/сут. может привести к ЖДА, но при потере таких малых объемов крови кровотечение не визуализируется.

Кровотечения из ЖКТ могут быть дополнительно классифицированы по другим различным параметрам. Классификация ЖКК и источников кровотечения из отделов ЖКТ по патологическим категориям представлены в таблицах 9.2 и 9.3 [159, 160].

В случае сохраняющихся признаков кровопотери из ЖКТ и необнаруженного источника ЖКК оно расценивается как *рецидивирующее кровотечение* с неустановленным источником. Данных о частоте и естественном течении скрытых кровотечений из отделов ЖКТ немного [161, 162].

ЖДА вследствие нарушения всасывания железа

Наиболее частые причины синдрома нарушения всасывания железа при патологии ЖКТ ассоциированы с развитием синдрома мальабсорбции (таблица 9.4). При этом выраженность сидеропении и степень ЖДА, ассоциированных с мальабсорбцией, варьируют и зависят от клинического течения основного заболевания пищеварительного тракта.

Вторая по частоте встречаемости причина анемии — атрофический гастрит, ассоциированный с инфекцией *H. pylori или аутоимунным гастритом*. Причиной ЖДА является гипо- или анацидное состояние, что приводит к нарушению всасывания железа. При прогрессировании атрофии слизистой желудка к ЖДА может присоединиться В₁₂-дефицитная анемия, связанная со снижением синтеза внутреннего фактора Касла в париетальных клетках. При аутоимунном гастрите вначале развивается В₁₂-дефицитная анемия, а затем, по мере прогрессирования атрофии слизистой оболочки желудка на фоне аутоиммунного поражения, развивается и ЖДА.

В западных странах причиной мальабсорбции железа чаще являются целиакия, болезнь Крона, муковисцидоз и кишечная лимфангиэктазия. Тропический спру, паразитарные инвазии, туберкулез кишечника и синдром первичного иммунодефицита — частые причины мальабсорбции железа в странах Африки и Азии [163].

Таблица 9.2

Классификация ЖКК

Показатель кровотечения	Определение	
По локализации	Из ВО ЖКТ	
	Из СО ЖКТ	
	Из НО ЖКТ	
По форме кровопотери	Острое (явное)	
	Хроническое (скрытое, оккультное)	
По клинической картине и эндоскопическому осмотру	Продолжающееся	
	Остановившееся (состоявшееся)	
По интенсивности	Интенсивное	
	Неинтенсивное	
По степени тяжести	Легкое, средней тяжести, тяжелое	
По частоте	Первичное, рецидивное, рецидивирующее	

Сокращения: ВО — верхний отдел, ЖКТ — желудочно-кишечный тракт, НО — нижний отдел, СО — средний отдел.

Таблица 9.3

Источники явного и скрытого кровотечения из отделов ЖКТ по патологическим категориям

Неопластический	Сосудистый	Воспалительный	Генетический	Другой
Карцинома пищевода, желудка, тонкой и толстой кишки Аденомы Синдромы полипоза Опухоль из стромальных клеток ЖКТ (GIST) Саркома Капоши Лимфома Лейомиома или лейомиосаркома Нейроэндокринные	Варикозно- расширенные вены (на любом участке) Желудочная антральная эктазия сосудов (GAVE) Аорто-кишечные свищи Послеоперационное (место биопсии, полипэктомия, кровотечение из анастомоза, бариатрия и пр.) Ишемия	эно- венные вены эрозивный эзофагит ром участке) руная в (даVE) кишечные перационное биопсии, ктомия, ечение томоза, рияз Эрозивный гастрит Редкие гастриты (эозинофильный, коллагеновый) Язва (любая локализация, в том числе вызванная лекарствами) Язвы анастомозов ктомия, ечение целиакии Синдром Кэмерона рия и пр.) Лекарственный	Синдром Ослера–Вебера– Ренду Синдром Бина (голубого пузырчатого (или резинового) невуса (Blue rubber bleb nevus syndrome)) Нейрофиброматоз I или II типа Синдром Линча Синдром Клиппеля– Тренауне–Вебера (Klippel–Trenaunay–Weber) Синдром Гарднера	Другой Инфекционные заболевания: Clostridioides difficile Цитомегаловирус Паразитарная инфекция Туберкулез Венерические заболевания толстой кишки Дивертикулы: Дивертикулярное кровотечение* Дивертикул Меккеля
опухоли Липома	Ишемия Амилоидоз Сосудистые мальформации ЖКТ Интрамуральные артериовенозные мальформации (Поражение Дьелафуа (Dieulafoy)) Васкулит	эзофагит, гастрит, дуоденит, колит Эндометриоз Портальная гипертензивная гастропатия или энтеропатия Воспалительное заболевание кишечника	Синдром Германски– Пудлака Синдром Элерса–Данлоса	Причины, не связанные с ЖКТ, которые могут имитировать ЖКК: Бег на длинные дистанции** Кровохарканье Орофарингеальное кровотечение (т.е. эпистаксис — носовое кровотечение) Гинекологическое кровотечение Искусственное кровотечение (самоиндуцированное)

Примечания: * — дивертикулярные кровотечения, особенно у пожилых людей, проходят самостоятельно со спонтанным разрешением в 75-90% случаев, что обязательно следует учитывать при выявлении ЖДА [171]. ** — бег на длинные дистанции описан в литературе как редкая причина скрытого ЖКК из НО ЖКТ, вероятно, из-за снижения внутренней перфузии, приводящей к временной ишемии кишечника [172].

Сокращения: ЖКК — желудочно-кишечное кровотечение, ЖКТ — желудочно-кишечный тракт.

9.2. Клинические симптомы и синдромы ЛДЖ и ЖДА при патологии органов пищеварения

Выраженность клинических проявлений анемического синдрома при ЖДА определяется не столько степенью тяжести анемии, сколько ско-

ростью ее развития. Пациенты с длительным анамнезом анемии нередко хорошо компенсированы даже при показателях гемоглобина, соответствующих среднетяжелой и тяжелой анемии

Таблица 9.4

Причины синдрома мальабсорбции и развития ЖДА

Нарушение переваривания в просвете	Постгастрэктомический синдром, хронический панкреатит, муковисцидоз,		
тонкой кишки	заболевания и резекция поджелудочной железы, синдром Золлингера–		
	Эллисона; нарушение обмена желчи (механическая желтуха, желчнокаменная		
	болезнь, резекция подвздошной кишки); бариатрическая хирургия;		
	двигательные нарушения тонкой кишки при сахарном диабете,		
	псевдообструкции и употреблении наркотиков		
Нарушение всасывания вследствие	Первичные аномалии слизистой оболочки: энтеропатии (целиакия,		
патологии слизистой оболочки тонкой	тропическая спру, болезнь Уиппла и пр.), амилоидоз, и пр.		
кишки (абсорбционные нарушения)	Вторичные энтеропатии: болезнь Крона, резекция кишечника, резекция		
	тощей кишки, прием лекарственных препаратов (НПВС, метотрексат и др.),		
	коллагенозы, глистные и паразитарные (лямблиоз) инвазии, ВИЧ-инфекция,		
	инфекция H. pylori		
Нарушение всасывания вследствие	Лимфатическая обструкция: кишечная лимфангиэктазия, злокачественные		
патологии подслизистого слоя тонкой	лимфомы, в том числе макроглобулинемия Вальденстрема, радиоактивные		
кишки (постабсорбционные нарушения)	поражения и др.		

Следует отметить, что гипоксический синдром встречается при ЖДА вне зависимости от типа и этиологического фактора самой анемии.

При патологии органов ЖКТ у пациентов с ЛДЖ и ЖДА наряду с гипоксическим и сидеропеническим синдромами, могут присутствовать симптомы кровопотери из пищеварительного тракта, симптомы диспепсии, признаки мальабсорбции, нарушения частоты и характера стула, болевой абдоминальный синдром [163].

Сидеропенический синдром при ЛДЖ и ЖДА (извращение вкуса, сухость кожи, изменение ногтей, выпадение волос, ангулярный стоматит, жжение языка, диспепсия, повышенная утомляемость, пагофагия, синдром беспокойных ног, головная боль, снижение толерантности к физическим нагрузкам и, часто их неприятие, одышка при физической нагрузке, слабость), ассоциированный с патологией ЖКТ, как правило, сопровождается другими клиническими проявлениями мальабсорбции: снижение массы тела, сопутствующие проявления дефицита других макро- и микроэлементов и витаминов, диарея и симптомы основного заболевания.

Подробный анамнез желудочно-кишечных симптомов, таких как симптомы диспепсии (изжога, дисфагия, одинофагия, повторяющаяся тошнота, рвота или длительная анорексия) и/или болевой абдоминальный синдром должен направить врача к поиску источника кровотечения из ВО ЖКТ. Наличие ЖДА у пациента с симптомами диспепсии относится к симптомам "тревоги" и требует проведения дополнительного обследования в рамках онконастороженности [12, 38, 163].

Многообразие клинических симптомов ДЖ можно объяснить широким спектром метаболических нарушений, к которым приводит дисфункция железосодержащих и железозависимых ферментов [11, 12, 164].

9.3. Диагностический алгоритм при выявлении ЛДЖ или ЖДА у пациента с патологией органов пищеварения

1-ый этап диагностики включает сбор жалоб, объективный осмотр и тщательный сбор анамнеза, в том числе, наличие диагностированных ранее заболеваний органов пищеварения, наследственной отягощенности по онкопатологии, язвенной болезни, воспалительных заболеваний кишечника, прием лекарственных препаратов, ассоциированных с повышенным риском развития эрозивно-язвенных поражений слизистой оболочки ЖКТ, (НВПС, антиагреганты, антикоагулянты, глюкокортикостероиды, цитостатики), рак и наследственный полипоз кишечника в роду, оценка эпидемиологического риска (гельминтозы, паразитозы). При физикальном обследовании пациентов с подозрением на ЖДА необходимо обращать внимание на характерные признаки сидеропенического и гипоксического синдромов. Вместе с тем, симптомы анемии и сидеропении имеют низкую диагностическую ценность и не позволяют установить достоверный диагноз ЖДА. Решающее значение в диагностике ЖДА имеют лабораторные исследования.

Всем пациентам рекомендуется выполнение ОАК с определением гемоглобина, гематокрита, количества эритроцитов и ретикулоцитов, MCV, а также МСН и МСНС. Для верификации наличия абсолютного ДЖ необходимо исследовать показатели обмена железа — СФ, СЖ, трансферрин, ОЖСС, рассчитать HTЖ² [38, 164].

На 2-м этапе диагностики для уточнения причины ЖДА пациентам назначается биохимический анализ крови с определением основных показателей функционального состояния органов пищеварения (общий белок, альбумин, общий билирубин, прямой билирубин, аспартатаминотрансфераза, аланинаминотрансфераза, щелоч-

ная фосфатаза, гамма-глютаминтранспептидаза), копрологическое исследование с реакцией кала на скрытую кровь, а также кал на яйца гельминтов и паразитов² [12, 38].

3-й этап диагностики подразумевает поиск причины ДЖ.

1) Исследование фекалий (кала) на скрытую кровь (СКК), гемокульт-тест позволяет обнаруживать в кале кровь, которая не определяется визуально и не изменяет цвет кала, т.е. при содержании в нем гемоглобина <50 мг на 1 г. В норме с калом ежедневно выделяется до 2 мл крови, что эквивалентно 2 мг гемоглобина на 1 г кала. Сбор кала может проводиться дома (образец отправляется в лабораторию для анализа).

Существует два основных типа тестов на СКК: тест на основе гваяковой пробы (gFOBT) и иммунохимический тест (ИХ) на СКК.

gFOBT основан на обнаружении гема в кале посредством его пероксидазной активности. Существенным ограничением данного метода является его неспецифичность, поскольку реакция происходит как с гемоглобином человека, так и животных. Это обусловливает необходимость соблюдения диеты в течение нескольких дней перед исследованием, исключающей продукты, содержащие кровь (мясо, рыбу, птицу). Также в этот период следует избегать употребления сырых овощей, поскольку содержащаяся в них пероксидаза может приводить к ложноположительным результатам. Витамин С, напротив, ингибирует пероксидазную реакцию, что может вызывать ложноотрицательные результаты. Вследствие диетических ограничений и необходимости сбора нескольких образцов кала в течение нескольких дней, комплаентность пациентов к скринингу с использованием gFOBT, как правило, низкая. Несмотря на простоту выполнения и относительно низкую стоимость, являющиеся основными преимуществами данного метода, ограниченные операционные характеристики значительно снижают его ценность [165].

Фекальные ИХ тесты основаны на выявлении человеческого гемоглобина в кале посредством взаимодействия глобина, входящего в состав гемоглобина, и специфических моноклональных антител. ИХ тесты выявляют только гемоглобин человека, поэтому не требуют диетических ограничений при подготовке к анализу и не дают ложноотрицательных результатов при употреблении витамина С. ИХ тест более специфичен в диагностике ЖКК из дистальных отделов ЖКТ, в частности эпителиальных новообразований толстой кишки и КРР. Это объясняется тем, что при кровотечениях из проксимальных отделов ЖКТ глобин расщепляется пищеварительными ферментами.

Кроме ИХ теста для выявления фекального гемоглобина, был разработан FIT для обнаружения в кале комплекса человеческого гемоглобина с гаптоглобином (hHb/Hp). Этот комплекс не расщепляется под действием пищеварительных ферментов ЖКТ, в связи с чем, по мнению разработчиков теста на hHb/Hp, его использование могло бы обнаруживать гемоглобин в кале при кровотечениях не только из HO, но и из BO ЖКТ [38, 157].

В РФ для скрининга КРР может применяться только ФИТ, использование химических тестов, таких как гваяковый, не рекомендовано.

Сравнительный анализ эффективности различных тестов фекалий на СКК представлен в **табли**це 9.5.

- 2) Анализ крови на пепсиноген I, пепсиноген II и гастрин-17 для серологической диагностики атрофического гастрита и гипохлоргидрии, при которой всасывание железа может быть сниженным. Выявление изменений в данном тесте у пациента с ЖДА является показанием для проведения последующих исследований для оценки состояния слизистой оболочки желудка (верификация атрофии посредством проведения стандартизированной биопсии по OLGA для ЭГДС), оценки статуса *H. pylori* (¹³С-уреазный дыхательный тест) и оценки концентрации витамина В₁₂ (голотранскобаламин).
- 3) Всем взрослым пациентам с впервые установленным диагнозом ЖДА мужского пола и у женщин в постменопаузе либо в репродуктивном возрасте, у которых ЖДА не коррелирует с ежемесячной потерей менструальной крови или родами проводится эндоскопический осмотр ВО (ЭГДС) и НО (колоноскопия) пищеварительного тракта² [11, 38, 158, 159]. При первичной ЭГДС обязательна эндоскопическая диагностика наличия и степени атрофии по классификации Кимура-Такемото и кишечной метаплазии по EGGIM (Endoscopic grading of gastric intestinal metaplasia, эндоскопическая оценка желудочно-кишечной метаплазии). При наличии эндоскопических признаков атрофии/кишечной метаплазии показано проведение забора биоптатов для морфологической верификации степени атрофии и исключения диспластических изменений слизистой оболочки желудка. В соответствии с протоколом забора биопсийного материала по системе OLGA подразумевается обязательное взятие четырех биоптатов (два из антрального и два из тела по малой и большой кривизне желудка) и одного дополнительного (из угла желудка) с последующей оценкой интегральных показателей степени и стадии хронического гастрита, где под степенью понимается выраженность инфильтрации собственной пластинки слизистой оболочки желудка воспалительными клетками (лимфоцитами, плазматическими клетками и нейтрофильны-

Таблица 9.5 Сравнительный анализ диагностической эффективности различных исследований фекалий на СКК

Тест	Чувствительность	Специфичность		
Скрининговый тест кала на основе гваяковой кислоты	62-70%	87-96%		
ИХ анализ кала (FIT или ИХ тест)				
Семейство тестов OC-light с использованием порогового значения гемоглобина 10 мкг/г фекалий	79-88%	91-93%		
Семейство тестов ОС FIT-CHEK с пороговым значением гемоглобина 20 мкг/г фекалий	73-75%	91-95%		
Многоцелевое ДНК-тестирование кала (FIT-ДНК)	92% (95% ДИ 84-97)	84% (95% ДИ 84-85) специфичность снижается с возрастом		

Сокращения: ДИ — доверительный интервал, ИХ — иммунохимический.

ми лейкоцитами), под стадией — наличие атрофических изменений. В биоптатах также оценивается стадия и степень кишечной метаплазии по системе OLGIM [166]. Пациентам с ЖДА рекомендуется неинвазивное тестирование на *H. pylori* (если оно не проводилось раньше) с последующим проведением эрадикации при позитивном тесте [65, 166].

Выявление по данным ЭГДС эзофагита, эрозий или язв не должно рассматриваться в качестве основной причины ЖДА до момента исследования всего ЖКТ и выполнения колоноскопии. При недоступности или наличии противопоказаний к колоноскопии, а также при незавершенной колоноскопии возможно выполнение, мультиспиральной КТ-колоноскопии, КТ-ангиографии или ВКЭ.

Согласно актуальным клиническим рекомендациям, ирригоскопия характеризуется недостаточной диагностической эффективностью при верификации ЖКК и может рассматриваться лишь в качестве альтернативного метода при невозможности проведения современных высокоинформативных диагностических процедур. По данным исследований чувствительность метода составляет всего 8-33% для выявления эпителиальных новообразований менее 1 см и 27-33% для крупных аденоматозных эпителиальных новообразований, в то время как специфичность достигает 97-100% [169, 168].

В случаях, когда источник кровопотери в ВО и НО ЖКТ найти не удается, необходимо продолжить диагностический поиск в отношении возможного поражения тонкой кишки. Из инструментальных методов для диагностики органических поражений тонкой кишки возможно применение МР-энтерографии с двойным контрастированием, ВКЭ, БАЭ [61, 66].

Целиакия (глютеновая энтеропатия) относится к общепризнанным причинам развития ЖДА, поэтому вероятность ее наличия, даже у бессимптомных пациентов, целесообразно рассматривать при проведении дифференциальной диагностики. С целью скрининга на целиакию использу-

ются серологические маркеры, такие как антитела к тканевой трансглютаминазе, глиадину, эндомизию IgA/IgG. Одновременно с данными анализами следует определять общий IgA для исключения его дефицита, который часто встречается у пациентов с целиакией. Дефицит IgA может приводить к ложноотрицательным результатам скрининговых тестов. В случае положительных результатов серологического тестирования для подтверждения диагноза целиакии рекомендовано направить пациента на ЭГДС с биопсией из луковицы и постбульбарных отделов слизистой оболочки ДПК [169].

9.4. Особенности гастроэнтерологического обследования пациентов в предоперационном периоде

Пациент с положительным тестом на СКК, но без ЖДА

Следует учитывать высокую распространенность ложноположительных результатов тестов на СКК, в т.ч. фекальных ИХ тестов (FIT).

Проглатывание крови при носовом кровотечении или кровотечении из десен может привести к положительному результату на СКК.

Если у бессимптомного пациента есть подозрение на ЖКК с положительным результатом теста на СКК и без ЖДА, рекомендуется обследование толстой кишки и колоноскопия, особенно в случае, если пациенту >50 лет. Колоноскопия предпочтительнее в качестве первого шага из-за высокого риска развития КРР. Если у пациента наблюдаются симптомы со стороны ВО ЖКТ, следует также провести ЭГДС.

Если результаты колоноскопии в норме, у пациента нет симптомов и не развивается анемия, дальнейшее обследование не рекомендуется.

В случаях, когда проведенная колоноскопия (с адекватной подготовкой кишечника и полным осмотром всех анатомических сегментов) не выявляет патологических изменений, отсутствуют симптомы геморроя и лабораторные признаки анемии, но сохраняется положительный тест на СКК,

возможно проведение запланированного хирургического вмешательства с обязательным последующим мониторингом ОАК в амбулаторных условиях.

Пациент с положительным или отрицательным результатом теста на СКК и ЖДА

Пациенты с ЖДА, не связанной с гематологическими причинами или нарушениями всасывания, особенно мужчины и женщины в постменопаузе, требуют назначения обследования ЖКТ независимо от того, положительный или отрицательный результат теста на СКК, для исключения серьезной органической патологии. Выбор и последовательность процедур зависят от клинического подозрения и симптомов.

Бессимптомным пациентам с ЖДА (женщинам в пременопаузе/постменопаузе и мужчинам независимо от возраста) ЭГДС и колоноскопия назначаются независимо от результатов теста на СКК.

ЭГДС рекомендуется в качестве начального диагностического теста независимо от результатов теста на СКК у пациентов с ЖДА с симптомами со стороны ВО ЖКТ, историей употребления или злоупотребления НПВС и/или антикоагулянтов, злоупотребления алкоголем, при наличии цирроза печени, у лиц с нарушениями развития и когнитивными нарушениями, неспособными предъявлять жалобы и выражать свои симптомы.

Если у пациента тяжесть ЖДА не полностью объясняется тяжестью поражения ВО ЖКТ целесообразно проведение колоноскопии.

Если ЭГДС и колоноскопия не выявляют патологии, и у пациента есть тяжелая ЖДА, стойкие симптомы поражения тонкой кишки или неспособность скорректировать ЖДА адекватной заместительной терапией, то требуется оценка состояния тонкой кишки с помощью ВКЭ или БАЭ.

Повторная ЭГДС и колоноскопия рекомендуются пациентам с рефрактерной анемией, у которых комплексное первичное обследование не выявило источник кровотечения, особенно если исследование проводилось в другом медицинском центре.

Синдром Кэмерона может быть пропущен у пациентов с большой грыжей пищеводного отверстия диафрагмы (синдром Кэмерона — повреждение слизистой желудка ишемически-травматического происхождения в зоне "шейки" грыжевого мешка, где желудок травмируется ножками диафрагмы. Чаще это не язвы, а линейные эрозии, идущие по оси желудка).

В большинстве случаев стандартом оказания первичной помощи и диагностики при подозрении на острое ЖКК из ВО ЖКТ является экстренная эндоскопия ВО ЖКТ.

Результаты обследования ЖКТ при ЖДА иногда дают отрицательный результат. Тем не менее, источник анемии необходимо активно ис-

кать и в результате поиска может быть выявлена область источника кровотечения, анатомически близкая к ЖКТ. Скрытое кровотечение из носа, скрытые травмы или гемангиомы носа/ротоглотки, могут привести к проглатыванию крови. Тщательный физикальный осмотр может привести к обнаружению источника кровопотери.

В случае тяжелого или осложненного течения гастроэзофагеальной рефлюксной болезни, язвенной болезни желудка или ДПК, воспалительного заболевания кишечника, наличия выраженного синдрома мальабсорбции, экзокринной недостаточности поджелудочной железы пациенту показана консультация гастроэнтеролога. При выявлении или подозрении на онкологическое заболевание пищеварительного тракта пациент должен быть направлен к онкологу.

9.5. Показания для экстренной госпитализации в медицинскую организацию

- Развитие симптомов декомпенсации ЖДА (т.е. когда компенсаторные механизмы организма становятся недостаточными для поддержания адекватной доставки кислорода к жизненно важным органам, что проявляется выраженной симптоматикой: одышкой в покое, тахикардией, стенокардией, признаками СН, гипотензией, нарушением сознания или другими признаками органной гипоксии, чаще встречается при снижении концентрации гемоглобина <70 г/л).
 - Выявление явного кровотечения из ЖКТ.

При анемиях умеренной/тяжелой степени и/ или тяжелом заболевании ЖКТ, осложненном ЖДА, при прогрессирующей или рефрактерной анемии пациент с патологией ЖКТ по показаниям должен быть госпитализирован. Наилучшим вариантом госпитализации является гастроэнтерологическое отделение многопрофильной больницы/госпиталя, терапевтический или хирургический стационар больницы, что решается индивидуально в зависимости от тяжести течения основного заболевания и тяжести анемии.

После стабилизации состояния и выписки из стационара пациент должен находиться под амбулаторным наблюдением терапевта или профильного специалиста (терапевта, гастроэнтеролога, онколога) по месту жительства/регистрации.

9.6. Особенности заместительной терапии препаратами железа при выявлении патологии органов пищеварения

Целью терапии ЖДА у больных с заболеваниями ЖКТ является восполнение ДЖ до нормализации концентрации гемоглобина (у женщин 120-140 г/л, у мужчин 130-160 г/л) и восполнения тканевых запасов железа (СФ >40-60 мкг/л)² [11, 12, 164].

ПОПЖ можно применять у пациентов с патологией ЖКТ и легкой анемией.

В случаях плохой переносимости или наличия противопоказаний к применению ПОПЖ (при нарушении всасывания вследствие предшествующей резекции желудка и/или кишечника, пациентам с хроническим атрофическим гастритом, воспалительными заболеваниями кишечника и синдромом мальабсорбции) показано применение ПЖВВ.

Рекомендуется дополнительное назначение профилактических доз лекарственных препаратов железа лицам с патологией ЖКТ из группы риска развития ЛЖД и ЖДА (заболевания, сопровождающиеся нарушениями переваривания — гастрэктомия, бариатрические операции и др.) или рецидивирующими кровотечениями (варикозное расширение вен пищевода, болезнь Крона, ангиодисплазия, синдром Кэмерона и др.) и пациентам с неоперабельными опухолями любой локализации, сопровождающимися рецидивирующими кровотечениями² [12, 65, 164, 170].

Раздел 10. Влияние железодефицитных состояний на течение и прогноз сердечно-сосудистых заболеваний

ССЗ по-прежнему занимают лидирующие позиции как по распространенности, так и в структуре смертности. Встречаемость ССЗ возрастает с увеличением возраста и в РФ составляет >50% среди населения старше 70 лет [173]. К факторам, усугубляющим течение ССЗ, относится ДЖ, встречаемость которого также увеличивается с возрастом. ЖДА является независимым предиктором ССЗ и неблагоприятных исходов [174]. В популяционном исследовании ARIC-study (Atherosclerosis Risk in Communities), в котором проводилось наблюдение в течение более 6 лет за 13 883 пациентами без ССЗ, было показано, что пациенты со сниженным гемоглобином имели риск развития ССЗ почти в 1,5 раза выше вне зависимости от всех остальных факторов риска ССЗ [175]. В ряде исследований установлено, что независимо от наличия или отсутствия анемии, ДЖ приводит к развитию сердечно-сосудистых осложнений, снижению качества жизни и повышению летальности у пациентов с ССЗ [176-178].

10.1. Влияние железодефицитных состояний на течение и прогноз сердечной недостаточности

ДЖ часто встречаются при СН, ассоциируются с плохим прогнозом как при ХСН, так и при острой СН [179-182].

Независимое негативное влияние анемии на риск госпитализации и смерти среди пациентов

с СН было показано во многих исследованиях [183, 184]. Установлено, что анемия значительно ухудшает прогноз пациентов с СН и низкой фракцией выброса (ФВ) левого желудочка (ЛЖ): смертность от всех причин была выше на 47%, смерть или госпитализация — на 28%, госпитализация по причине СН — на 43% выше у пациентов с анемией по сравнению с пациентами без анемии [183, 185]. Выраженное негативное влияние на прогноз жизни анемия оказывает у пациентов с острой декомпенсированной СН, повышая риск смерти на 50% по сравнению с риском у пациентов без анемии [182].

ДЖ часто встречается у пациентов с СН независимо от наличия или отсутствия анемии и оказывает более выраженное негативное влияние на прогноз больных, чем анемия без ДЖ [176, 186]. Наличие ДЖ у пациентов с СН ассоциировано с низкой толерантностью к физической нагрузке, снижением качества жизни и повышением риска госпитализаций и смерти [176, 187, 188].

ДЖ при острой СН, вероятно, оказывает большее негативное влияние на прогноз. В исследовании было показано, что риск смерти пациентов с острой СН в течение года после выписки из стационара коррелировал с наличием ДЖ (определен как низкий уровень гепсидина и высокий уровень растворимого рецептора трансферрина (рРТф) и составил 41% для пациентов с ДЖ vs 0% для пациентов без ДЖ, что было показано независимо от наличия анемии [177]. Известно, что ДЖ является частой находкой при острой декомпенсированной СН и коррелирует с выраженным влиянием на частоту повторных госпитализаций. Согласно результатам исследования пациенты с абсолютным ДЖ госпитализировались на 72% чаще по сравнению с пациентами без ДЖ [189, 190]. Пациенты с эпизодом острой декомпенсированной СН и сопутствующим ДЖ представляют собой целевую группу населения высокого риска, у которой коррекция ДЖ является необходимой мерой [190].

10.2. Патофизиология дефицита железа при сердечной недостаточности

При СН развивается истощение запасов клеточного железа, что негативно влияет на поддержание энергетического гомеостаза миокарда, скелетной мускулатуры, других органов и тканей, а также на функцию органов кроветворения [177, 191].

Железо, в дополнение к его ключевой роли в поглощении и транспортировке кислорода в составе гемоглобина, играет важную роль в хранении и метаболизме кислорода в клетках, окислительно-восстановительном цикле, и необходимо как кофактор ряда ферментов, защищающих от активных форм кислорода [191, 192]. Следовательно, поддержание нормального гомеостаза железа

имеет решающее значение для клеток, которые требуют высокого поглощения энергии, таких как кардиомиоциты. Известно негативное влияние ДЖ на функцию митохондрий и сократительную способность миокарда. В исследованиях было показано, что ДЖ напрямую влияет на функцию кардиомиоцитов человека, нарушая митохондриальное дыхание и снижая сократимость и расслабление кардиомиоцитов, а восстановление содержания внутриклеточного железа приводило к обратному эффекту [46].

Клеточные нарушения в результате ДЖ имеют четкое клиническое выражение в виде ухудшения функционального статуса и повышения риска смерти у пациентов с СН даже при нормальной концентрации гемоглобина [178]. ДЖ приводит к развитию симпатической активации, гипертрофии ЛЖ, дилатации камер сердца, нарушению центральной гемодинамики, что ухудшает прогноз пациентов с СН [193-195]. Таким образом, неблагоприятные изменения в сердечно-сосудистой системе при ДЖ являются основными механизмами ухудшения прогноза жизни пациентов с СН.

10.3. Эпидемиология анемии и дефицита железа при сердечной недостаточности

Распространенность анемии у пациентов с ХСН составляет ~30% у стабильных пациентов и примерно 50% у госпитализированных пациентов с СН, независимо от ФВ ЛЖ, что значительно выше по сравнению с распространенностью в общей популяции (<10%), хотя, как известно, распространенность увеличивается с возрастом, превышая 20%-ный порог у респондентов в возрасте ≥85 лет [184, 196, 197]. Результаты исследований позволяют судить о том, что пациенты с ХСН, имевшие анемию, по сравнению с пациентами без анемии были старше и чаще женского пола, чаще имели сахарный диабет, ХБП, тяжелую СН с худшим функциональным статусом, более низкую толерантность к физической нагрузке, более низкое качество жизни, чаще имели отеки, гипотонию и нуждались в более высоких дозах петлевых диуретиков [197, 198].

ДЖ следует рассматривать как самостоятельное клинически значимое сопутствующее состояние, которое встречается примерно у половины пациентов со стабильной ХСН [199, 200] и примерно у 83% пациентов с острой декомпенсированной СН, причем часто без наличия анемии [201, 202].

10.4. Диагностика анемии и дефицита железа при сердечной недостаточности

Для диагностики анемии при ХСН применяются критерии, которые представлены в соответствующем разделе (раздел 6).

Диагностика ДЖ при СН представляет некоторые сложности. Концентрация СФ является маркером количества железа в депо. Известно, что при отсутствии воспаления или хронического заболевания СФ коррелирует с запасами железа в организме и ферритин сыворотки 100 мкг/л соответствует ~1 г тканевого железа [203]. У здоровых людей концентрация СФ <30 мкг/л и значение НТЖ <16% определяют ДЖ [204].

При развитии воспалительных состояний, включая СН, концентрация СФ неспецифически повышена как реагент острой фазы, что делает идентификацию абсолютного или функционального ДЖ затруднительной [13, 205]. По этой причине в различных клинических исследованиях по коррекции ДЖ у пациентов с СН концентрация СФ <100 мкг/л или <300 мкг/л, если НТЖ <20%, использовались для идентификации пациентов с абсолютным и функциональным ДЖ [189, 190]. Данные критерии диагностики ДЖ у пациентов с СН представлены в европейских рекомендациях 2021 г. [206], что согласуется с мнением российских экспертов¹¹.

Необходимо помнить, что концентрации СЖ может иметь большие суточные колебания у пациентов с СН, поэтому данный лабораторный показатель не может самостоятельно применяться для диагностики ДЖ у данной категории больных [202].

Однако существуют и другие методы диагностики ДЖ, которые применимы при СН. Например, рРТф, который повышается при ДЖ и не подвержен влиянию воспаления. Именно рРТф или НТЖ среди всех диагностических параметров имеют наиболее сильную корреляцию с истощением запасов железа в костном мозге независимо от других состояний [207, 208].

Другим важным маркером ДЖ при СН может стать гепсидин, который является главным регулятором абсорбции железа [177]. Гепсидин повышается при хронических заболеваниях, в том числе ХСН, вызывая функциональный ДЖ [203]. Гепсидин может стать потенциальной мишенью терапии при функциональном ДЖ при СН, что требует дальнейшего изучения. Известно, что в исследованиях на людях несколько антигепсидиновых агентов увеличивали биодоступность железа [13, 207]. Спиронолактон, который используется при лечении СН, показал эффективность в подавлении экспрессии гепсидина у мышей, что требует дальнейшего изучения этой стратегии у человека [209].

Таким образом, у всех пациентов с ХСН, независимо от концентрации гемоглобина, необходимо проводить обследование для оценки наличия и выраженности ДЖ¹¹ [200].

¹¹ Клинические рекомендации "Хроническая сердечная недостаточность". 2024. https://cr.minzdrav.gov.ru/preview-cr/156_2.

10.5. Особенности лечения анемии и железодефицитных состояний у пациентов с сердечной недостаточностью

Учитывая выраженное влияние ДЖ на течение СН и прогноз, устранение ДЖ должно рассматриваться как важное направление в лечении таких больных.

Лечение анемии при СН является сложной задачей в силу многофакторного патогенеза ее развития. При лечении анемии у пациентов с СН основное внимание должно быть уделено поиску и устранению конкретных причин анемии, если это возможно [200]. Необходимо учитывать, что лечение СН и уменьшение гипоксии органов и тканей способствует уменьшению выраженности анемии и ДЖ. Пациенты с ХСН должны получать оптимальную базисную терапию СН, принципы которой подробно изложены в клинических рекомендациях¹¹.

Помимо того, что ДЖ является ведущей причиной анемии у пациентов с СН, он также часто встречается у пациентов с СН без анемии и ассоциирован с неблагоприятным прогнозом [200]. Коррекция ДЖ у пациентов с СН имеет особенности. В исследовании IRON-OUT было установлено, что эффективность терапии ПОПЖ у пациентов с СН недостаточна в связи с нарушением всасывания препарата и низкой приверженностью к лечению из-за нежелательных явлений со стороны ЖКТ [210]. Поэтому ПОПЖ не рекомендуются для коррекции ДЖ у пациентов с СН.

Приоритетным направлением коррекции ДЖ у пациентов с СН является применение ПЖВВ, в частности железа карбоксимальтозата или деризомальтозата. В рандомизированном клиническом исследовании (РКИ) было показано, что добавление к лечению карбоксимальтозата железа внутривенно безопасно, улучшает симптомы, повышает толерантность к физическим нагрузкам и качество жизни у пациентов с СН, низкой ФВ ЛЖ (СНнФВ) и ДЖ [211-213]. Более того, метаанализ РКИ, в которых использовался карбоксимальтозат железа для коррекции ДЖ при СН, показал снижение риска комбинированной конечной точки: смерти от всех причин или госпитализации по сердечно-сосудистым причинам, смерти от ССЗ или госпитализации по причине СН, смерти от ССЗ или повторных госпитализаций по причине ССЗ или СН [214, 215].

В РКИ AFFIRM-AHF изучалось применение железа карбоксимальтозата для внутривенного введения у пациентов с острой СН и ФВ ЛЖ <50%, госпитализированных в стационар. Введение железа карбоксимальтозата не приводило к статистически значительному снижению общего числа госпитализаций по поводу СН и смерти от ССЗ через

52 нед. от начала лечения (отношение рисков (OP) 0,79; 95% доверительный интервал (ДИ) 0,62-1,01; p=0,059). Вместе с тем это лечение уменьшило составную конечную точку в виде первой госпитализации по поводу CH или смерти от CC3 (OP 0,80; 95% ДИ 0,66-0,98; p=0,030) и общее количество госпитализаций по поводу CH (OP 0,74; 95% ДИ 0,58-0,94; p=0,013) [190].

В 2022 г. было опубликовано исследование IRONMAN, в котором изучалось применение ПЖВВ (железа деризомальтозата). После предварительно запланированного анализа с учётом влияния пандемии новой коронавирусной инфекции было показано снижение риска госпитализаций по причине СН и смертей от ССЗ в группе пациентов, получавших железа деризомальтозат, по сравнению с контрольной группой (ОР 0,76; 95% ДИ 0,58-1,00; p=0,047) [216].

Таким образом, результаты РКИ и метаанализов свидетельствуют об эффективности применения железа карбоксимальтозата у пациентов с СН и ФВ ЛЖ <50%, недавно госпитализированных по поводу декомпенсации СН, что нашло отражение в клинических рекомендациях. В обновлении европейских клинических рекомендаций от 2023 г. ПЖВВ рекомендованы симптоматическим пациентам с СНнФВ и СН с умеренно сниженной ФВ и ДЖ с целью уменьшения тяжести симптомов СН и улучшения качества жизни [206].

Согласно клиническим рекомендациям по CH 2024 г., утвержденным Минздравом России, внутривенное введение железа карбоксимальтозата рекомендуется пациентам с симптомами ХСН и ФВ ЛЖ <45% и ДЖ (СФ <100 мкг/л, или СФ в диапазоне 100-299 мкг/л при НТЖ <20%) с целью улучшения симптомов СН, функциональных возможностей и качества жизни пациентов с ХСН¹¹.

Кроме того, ПЖВВ рекомендуются симптоматическим пациентам с ХСН и ФВ ЛЖ <50%, недавно госпитализированным по поводу СН, и ДЖ (СФ <100 мкг/л, или СФ в диапазоне 100-299 мкг/л при НТЖ <20%) с целью уменьшения риска госпитализаций в связи с ХСН [217].

Подробная информация о применении ПЖВВ представлена в **разделе 13.2**.

10.6. Железодефицитные состояния и фибрилляция предсердий

Анемия является известным неблагоприятным прогностическим фактором у пациентов с нарушениями ритма [218]. Как известно, пациенты с ФП имеют вдвое больший риск смерти по сравнению с пациентами с синусовым ритмом, вероятно, изза частого присутствия сопутствующих заболеваний, включая анемию, т.к. пациенты с ФП часто

имеют возраст старше 65 лет. Анемия у этих пациентов часто сочетается с сахарным диабетом, ХСН и ХБП [219, 220].

Анемия является частым сопутствующим заболеванием у лиц с ФП и встречается примерно у 16% пациентов. Анемия независимо связана с повышенной летальностью, инсультом, системной тромбоэмболией и кровотечением у пациентов с ФП [221]. В проспективном когортном исследовании 132 250 пациентов в возрасте от 40 до 79 лет было показано, что анемия, определяемая как гемоглобин <130 г/л, в течение 15 лет наблюдения в 1,5 раза повышала риск развития новых случаев ФП [222].

Сосуществование анемии и ФП увеличивает большие и значимые кровотечения в анамнезе (4,2% у пациентов с анемией vs 1,5% у пациентов без анемии, p<0,001). Известно, что пациенты с ФП и анемией реже получали пероральную антикоагулянтную терапию (44,4% у пациентов с анемией vs 52,4% без анемии, p<0,001) [223]. Следовательно, наличие анемии при ФП снижает возможности эффективной профилактики инсульта и тромбоэмболический осложнений.

Пациенты с ФП и сопутствующей анемией имеют худшие исходы по сравнению с пациентами без ФП [220]. Анемия известна как предиктор смертности и госпитализаций среди пожилых пациентов с ФП независимо от демографических факторов, сопутствующих заболеваний или приема сердечно-сосудистых препаратов [224].

Следует отметить, что анемия может увеличивать риск госпитализаций по причине СН среди пациентов с ФП. Риск госпитализации по причине СН при наличии легкой анемии по сравнению с пациентами без анемии был выше на 87%, а при средней и тяжелой анемии — более чем в два раза. Выявленная закономерность не зависела от приема пероральных антикоагулянтов. Кроме того, в этом исследовании анемия была связана с более высоким риском большого кровотечения у пациентов с ФП [225].

Анемия влияет так же на исходы высокотехнологических методов лечения ФП. В исследовании было показано, что анемия, выявленная у пациентов с ФП до выполнения радиочастотной абляции, на 45% повышала риск возврата клинических проявлений ФП независимо от влияния других факторов [226].

Таким образом, анемия увеличивает бремя сопутствующих заболеваний у пациентов с ФП и независимо увеличивает риски неблагоприятных исходов, таких как увеличение количества госпитализаций, смертности, кровотечений и тромбоэмболических осложнений. Раннее выявление и коррекция анемии у пациентов с ФП может оказать положительное влияние на уменьшение этих нежелательных явлений [227].

Важно отметить, что пациенты с ФП имеют высокий риск развития ДЖ. Во-первых, потому что чаще это пожилые пациенты, у которых могут быть все факторы развития ДЖ. Во-вторых, существуют и другие специфические факторы риска у больных с ФП, такие как прием антикоагулянтов (повышается риск скрытых кровотечений при наличии патологии ЖКТ), применение ИПП параллельно приему антикоагулянтов, что нарушает всасывание железа [221, 228]. В исследовании было показано, что риск развития ДЖ был в два раза выше у пациентов с постоянной формой ФП по сравнению с пациентами, имевшими пароксизмальную форму ФП [229], что, вероятно, может быть связано с большей длительностью применения антикоагулянтной терапии. Другим фактором, который мог повлиять на более высокий риск развития ЖДА, является более частый и длительный прием дигоксина при постоянной форме ФП. Известно, что прием дигоксина повышает риск развития анемии на 38% у пациентов с ФП и на 50% у пациентов c XCH [230].

По данным американских баз данных среди 5 975 241 госпитализированных больных с ФП у 2,5% больных был выставлен диагноз ЖДА. При этом пациенты с ФП и ЖДА характеризовались более высокой частотой развития острого инфаркта миокарда, острого повреждения почек и других осложнений [218].

Коррекция ДЖ у пациентов с ФП может быть действенным способом улучшения качества жизни и переносимости физических нагрузок. Исследования по коррекции этого состояния у пациентов с ФП запланированы [231].

10.7. Железодефицитные состояния и ишемическая болезнь сердца

ДЖ наблюдается у пациентов с ССЗ и является значимым фактором, ухудшающим течение и прогноз ишемической болезни сердца (ИБС) [232-236]. Согласно недавним исследованиям, распространенность ДЖ достигает 60% среди пациентов с ИБС [237]. Следует отметить, что ДЖ может наблюдаться даже в отсутствие анемии и оказывает самостоятельное негативное влияние на течение ИБС [238].

Железо является важным кофактором многих ферментов, вовлеченных в энергетический обмен и окислительно-восстановительные процессы в миокарде. ДЖ приводит к митохондриальной дисфункции, снижению энергетических резервов миокарда и нарушению сердечной механики [238]. Патогенетически выделяют три основных механизма ДЖ у пациентов с СН и ИБС: системный ДЖ

(низкое значение НТЖ, часто ниже 15-16%), внутриклеточный ДЖ, обусловленный воспалением и снижением физической активности, и нарушения субклеточного гомеостаза железа, связанные с нейрогормональной активацией [239].

Исследования показывают, что у пациентов с острым коронарным синдромом наличие ДЖ ассоциируется с ухудшением долгосрочного прогноза и повышением летальности [240]. Важным механизмом, объясняющим ухудшение клинического течения, является обострение ишемического повреждения миокарда на фоне ДЖ, в частности за счет увеличения размеров инфаркта, неблагоприятного ремоделирования ЛЖ и развития ишемической кардиомиопатии [238].

Диагностика ДЖ у пациентов с ИБС основана на определении концентрации СФ и НТЖ. Абсолютный ДЖ диагностируется при СФ <100 мкг/л, а функциональный — при СФ от 100 до 299 мкг/л и НТЖ <20% [237].

Лечение ДЖ при ИБС подразумевает назначение ПЖВВ (железа карбоксимальтозата), что улучшает симптомы, качество жизни и переносимость физических нагрузок, а также снижает частоту госпитализаций у пациентов с ИБС и СН [237, 238]. Важно отметить, что коррекция ДЖ должна проводиться независимо от наличия анемии, поскольку именно внутриклеточный ДЖ является ключевым фактором неблагоприятных исходов [237].

Раздел 11. Лечение

В обычных условиях и при нормальном физиологическом состоянии соблюдения принципов здорового питания достаточно для удовлетворения нормальных потребностей организма в железе. Природными пищевыми источниками железа могут являться пищевые продукты животного (мясо, птица, рыба, печень, почки и др.) и растительного происхождения (картофель, белые грибы, бобовые, такие как чечевица и фасоль, тёмно-зелёные листовые овощи, такие как шпинат, и обогащённые каши, тофу, тыквенные семечки, киноа и сухофрукты, например, курага и др.).

Считается, что биологическая доступность железа из обычного смешанного рациона составляет ~10-20%. Биодоступность многих микронутриентов, включая железо, из растительных источников значительно ниже, чем из мяса. С рационом также должно быть обеспечено достаточное поступление витаминов, поскольку обеспеченность витаминами С и B_2 влияет на всасывание и транспорт железа, фолиевая кислота и витамин B_{12} участвуют в синтезе гема, витамин B_6 — в созревании эритроцитов.

В основе диетического лечебного и профилактического питания лежит обеспечение физиоло-

гических потребностей организма в энергии, макро- и микронутриентах с учетом особенностей патогенеза, тяжести течения заболевания, наличия осложнений и сопутствующих заболеваний; разнообразие диетического рациона и включение в него пищевых продуктов, богатых железом, полноценного белка, витаминов и других микроэлементов, продуктов и веществ, повышающих абсорбцию железа, а также обогащенных, диетических (лечебных и профилактических) специализированных пищевых продуктов и биологически активных добавок к пище (источники железа, витаминно-минеральные комплексы).

При преимущественно растительном характере питания (вегетарианская, лактовегетарианская, лактововегетарианская, веганская и др.), при соблюдении диет (например, безглютеновой при целиакии, диеты без фенилаланина, при муковисцидозе) может развиться ДЖ. С целью профилактики заболеваний, обусловленных ДЖ в структуре питания населения, рекомендуется обогащение муки, хлеба и хлебобулочных изделий из пшеничной муки высшего и первого сорта пятью витаминами группы В и железом [37].

Несмотря на то, что строгая вегетарианская диета содержит сниженное количество железа, включение в рацион обогащенных пищевых продуктов (из муки обогащенной железом) обычно уменьшает ДЖ в пищевом рационе, кроме случаев потери крови за счет кровотечения. В поливитаминах обычно содержится достаточное количество железа для поддержания концентрации железа в крови при потерях крови, обусловленных нормальными менструациями.

Количества железа, содержащегося в пище, недостаточно для восполнения запасов железа у лиц с ДЖ. Даже пища с высоким содержанием железа (например, обогащенные железом зерновые или мясные субпродукты) содержит лишь несколько миллиграммов железа. В то же время ПОПЖ и ПЖВВ обеспечивают полное восполнение запасов железа при назначении их в соответствии с рекомендациями, которые будут приведены далее.

Следует отметить отсутствие доказательной информации высокого качества об оптимальном дозировании препаратов железа у лиц пожилого возраста. Обычно предлагают следующий подход [241]:

- Использование низкого порога для назначения ПЖВВ у пожилых пациентов с ДЖ. Если нет возможности немедленного назначения ПЖВВ, возможно применение ПОПЖ, но с учетом того, что использование ПЖВВ может потребоваться в случае плохой переносимости или неэффективности ПОПЖ.
- ПОПЖ должны назначаться не чаще, чем 1 раз в день, а прием ПОПЖ через день (альтерни-

рующий/интермиттирующий режим дозирования) может быть так же или даже более эффективен по сравнению с его приемом 1 раз в день. Кроме того, прием ПОПЖ через день может сопровождаться меньшей частотой развития нежелательных явлений, обусловленных влиянием на ЖКТ.

• Низкие дозы ПОПЖ могут быть достаточно эффективны, и применение таких доз сопровождается меньшим количеством нежелательных явлений со стороны ЖКТ [242].

11.1. Лечение пероральными препаратами железа

Могут быть следующие основания для коррекции абсолютного ДЖ:

- ПОПЖ для многих пациентов может быть единственно приемлемой формой;
- использование ПОПЖ позволяет избежать необходимости обеспечения внутривенного доступа и привлечения медперсонала для его выполнения;
- при применении ПОПЖ исключается возможность развития реакций, обусловленных инфузией, или анафилаксии;
- обычно ПОПЖ используют у детей раннего возраста (только жидкие лекарственные формы), детей и подростков (жидкие и твердые лекарственные формы).

Применение ПОПЖ представляет собой недорогой и эффективный подход к восполнению ДЖ у пациентов с ДЖ при отсутствии сопутствующих заболеваний.

ПОПЖ применяют со следующими целями:

- лечение ЖДА;
- лечение ЛДЖ.

Следует отметить, что применение ПОПЖ может быть неэффективно у лиц с продолжающейся потерей крови, воспалительными заболеваниями кишечника, ХБП или при развитии клинически значимых нежелательных явлений. Такие данные должны стать дополнительным основанием для тщательного поиска источника кровотечения.

Подходы к выбору ПОПЖ

Имеется несколько лекарственных форм ПОПЖ и при точном соблюдении предписанного режима терапии такие препараты могут иметь сходную эффективность [54]. Наиболее приемлемыми формами ПОПЖ считают жидкие (что позволяет подбирать дозы) или таблетированные.

Все ПОПЖ принципиально можно разделить на препараты двухвалентного и трехвалентного железа, так как именно это в первую очередь определяет их биодоступность и, соответственно, скорость восстановления гемоглобина, эритроцитарных индексов и депо железа, а также переносимость терапии.

Соединения двухвалентного железа показывают лишь незначительные различия между собой по эффективности всасывания железа. Соединения трехвалентного железа всасываются хуже. Это связано с различиями в механизме всасывания.

Биодоступность солей двухвалентных железа в несколько раз выше, чем соединений трехвалентного, так как они проникают внутрь энтероцита не только посредством физиологического механизма, через каналы ДМТ1-белков и ферропортин, но и свободно диффундируют через межклеточное пространство. Это приводит к повышению в плазме концентрации несвязанного железа, вызывающего окислительный стресс и нежелательные явления со стороны ЖКТ, которые часто становятся причиной отказа от терапии и прогрессирования ДЖ [243].

Всасывание железа из препаратов трехвалентного железа более медленное, так как им необходим активный (энергозависимый) транспорт с участием феррооксидаз, что схоже с физиологическими условиями.

При применении трехвалентных соединений, ионизированное железо в свободном виде не выделяется в просвет ЖКТ, что обеспечивает хорошую переносимость более высокую приверженность пациентов к терапии и, соответственно, повышает эффективность фармакотерапии ЖДА [244].

У разных ПОПЖ примерно сходные нежелательные явления. Применение лекарственной формы препаратов железа с пролонгированным (замедленным высвобождением) дает возможность снизить риск повреждающего действия на ЖКТ. Активное ионизированное железо окружено трехразмерным пластиковым матриксом, имеющим поры. Матрикс по мере продвижения по ЖКТ постепенно набухает и становится проницаемым для соединения железа. Высвобождение действующего вещества происходит постепенно вначале из поверхностных, а затем из более глубоких слоев матрикса. После полного высвобождения опустевший носитель разрушается и элиминируется из кишечника. Постепенное и равномерное высвобождение железа в малых количествах способствует меньшему раздражению слизистой оболочки кишечника и лучшей переносимости препарата; а увеличение площади поверхности всасывания обеспечивает высокую биодоступность. Время высвобождения активного вещества регламентируется нормативными документами¹².

Дозирование и назначение ПОПЖ

В последние годы изменились подходы к восполнению запасов железа, так как появилось боль-

European Medicines Agency. Guideline on quality of oral modified release products. https://www.ema.europa.eu/en/documents/scientific-guideline/ guideline-quality-oral-modified-release-products_en.pdf.

шое число доказательств того, что назначение слишком высоких доз возможно неэффективно, так как при использовании таких доз уменьшается абсорбция железа и увеличивается частота развития нежелательных явлений при отсутствии повышения запасов железа в организме и выраженности анемии. С другой стороны, использование у пациентов с ЖДА лекарственных средств с более низким содержанием железа обычно сопровождается не только уменьшением частоты нежелательных явлений, но и снижением эффективности терапии [245]. Иными словами, наиболее острой проблемой, возникающей при лечении больных ЖДА ПОПЖ, является достижение оптимального соотношения "эффективность/безопасность".

Ежедневный прием или прием через день. Обычно пациентам рекомендуют принимать препарат в выбранном режиме так долго, как они могут соблюдать такой режим приема (например, в понедельник, среду и пятницу).

Число доз в день: нет оснований для назначения >1 дозы препарата в день.

Количество железа в каждой дозе: требуемое количество препарата, принимаемого через день или при режиме приема "понедельник — среда — пятница" также точно не установлено. Однако нет оснований считать, что прием более высоких доз обеспечит увеличение абсорбции. В то же время у отдельных пациентов может быть обоснован ежедневный прием препарата железа, если такой режим дозирования улучшает переносимость терапии или облегчает соблюдение предписанного режима.

Описанные выше подходы применимы к назначению солей двухвалентного железа, довольно часто приводящих к снижению приверженности лечения из-за возникающих нежелательных явлений. Альтернативой является назначение препаратов трехвалентного железа, обладающих лучшим профилем переносимости при сравнимой эффективности [244].

Пациенты пожилого возраста предрасположены к развитию нежелательных явлений, обусловленных поражением ЖКТ, особенно тяжелых запоров, поэтому у пожилых пациентов нередко стараются, по возможности, назначать ПЖВВ. Если такие пациенты предпочитают применение ПОПЖ, их назначают в более низких дозах.

Некоторые врачи рекомендуют принимать препараты железа вместе с источниками аскорбиновой кислоты. Такая тактика основывалась на рекомендации ВОЗ¹³ и предположении о том, что аскорбиновая кислота может повысить абсорб-

цию железа. Однако результаты исследований не подтвердили существенного влияния более низкой рН в желудке на абсорбцию железа. Если железо не абсорбируется, обычно пациента переводят на ПЖВВ и, если возможно, стараются установить причины низкой абсорбции.

Факторы, учет которых может изменить абсорбцию железа [243, 246-250]:

Пища: содержащиеся в пищевых продуктах фосфаты, фитаты и дубильные веществ могут связывать железо и снижать его абсорбцию.

Препараты двухвалентного железа обычно не рекомендуют принимать с пищей.

Препараты трехвалентного железа можно применять совместно с пищей, более того, при таком способе применения всасывание железа из них увеличивается.

Следует обращать особое внимание на то, чтобы препараты двухвалентного сульфата железа принимались отдельно от содержащих кальций продуктов и напитков (молоко), пищевых добавок с кальцием, зерновых, диетических волокон, чая, кофе и яиц.

рН в желудке: железо лучше всего всасывается в виде соли железа (Fe²⁺) в слабокислой среде желудка. Кислая среда в желудке способствует абсорбции железа, а лекарственные средства, снижающие кислотность, ухудшают абсорбцию.

Препараты двухвалентного железа следует принимать за 2 ч до или через 4 ч после приема пищи или приема антацидов.

Рекомендуемая продолжительность терапии препаратами железа варьирует в зависимости от мнения экспертов и клинической ситуации². В некоторых случаях может быть обоснованным прекращение приема ПОПЖ при нормализации концентрации гемоглобина в крови, так как в таких случаях легче выявить ранний рецидив анемии, обусловленный продолжающейся кровопотерей из ЖКТ. В других случаях, оправдан прием ПОПЖ в течение не менее 6 мес. после нормализации концентрации гемоглобина в крови с целью полного восполнения запасов железа (например, у женщин после многоплодной беременности). В некоторых случаях для полного устранения анемии может потребоваться прием ПОПЖ в течение 6-8 нед., а для полного восполнения железа в организме — 6 мес.

Нежелательные явления, обусловленные приемом ПОПЖ

Нежелательные явления ПОПЖ, обусловленные влиянием на ЖКТ, очень распространены. Такие эффекты могут включать появление металлического привкуса во рту, тошноту, метеоризм, запоры, диарею, дискомфорт в эпигастрии и/или рвоту. Пациентов может также беспокоить кожный зуд и черно-зеленая окраска стула, и дегтеобраз-

Preventing and controlling iron deficiency anaemia through primary health care: a guide for health administrators and programme managers. https://iris. who.int/bitstream/handle/10665/39849/9241542497_eng.pdf?sequence=1.

ный стул, что приводит к появлению пятен на одежде и беспокойству по поводу возможного ЖКК. В результате снижается готовность пациента продолжить терапию.

Подходы к улучшению переносимости ПОПЖ Назначение трехвалентных препаратов железа.

Увеличение интервалов между приемом препаратов двухвалентного железа, т.е. назначение через день, если это уже не было сделано.

Изменения в приеме пищи (например, прием ПОПЖ с пищей или молоком), несмотря на возможное уменьшение абсорбции.

Перевод на прием ПОПЖ с меньшим содержанием элементарного железа.

Перевод с приема таблетированных форм на жидкие формы, использование которых облегчает подбор дозы.

Использование размягчителей стула или слабительных, формирующих объем, опорожнение кишечника через определенное время после еды для использования возможностей гастроколитического рефлекса.

Использование принципов титрования дозы: после определения переносимой дозы в некоторых случаях пациент может медленно повышать дозу, если он переносит такое повышение дозы.

Следует отметить, что во многих случаях при плохой переносимости ПОПЖ приходиться переходить на ПЖВВ, которые устраняет все нежелательные явления железа на ЖКТ, обусловленные влиянием железа на слизистую оболочку тонкой кишки. При переходе на ПЖВВ прием ПОПЖ следует прекратить. Сведения об основных ПОПЖ представлены в таблице 11.1.

В последние годы появились новые ПОПЖ, такие как цитрат железа, железа мальтол и сукросомиальное железо, которые демонстрируют хорошую переносимость и эффективность [251, 252]. Однако в РФ они либо не зарегистрированы, либо зарегистрированы в качестве биологически активных добавок.

11.2. Лечение парентеральными препаратами железа

Внутривенное введение препаратов железа

Имеются определенные клинические ситуации, при которых ПЖВВ могут быть предпочтительными. К ним относят следующие [54, 108, 253]:

- низкая приверженность или нежелательные явления при приеме препаратов ПОПЖ;
- предпочтение восстановления запасов железа путем посещения медицинского учреждения 1 или 2 раза вместо курса терапии ПОПЖ в течение нескольких месяцев;
- продолжающиеся потери крови, при которых прием ПОПЖ не может удовлетворить по-

требности организма в железе (например, тяжелые маточные кровотечения или телеангиоэктазии слизистых);

- анатомические или физиологические характеристики пациента, которые влияют на абсорбцию ПОПЖ;
- наличие сопутствующих воспалительных заболеваний, которые влияют на гомеостаз железа;
 - наличие ССЗ (ХСН, ИБС) и ДЖ.

Применение парентеральных препаратов трехвалентного железа показано пациентам с расстройствами всасывания вследствие предшествующей обширной резекции кишечника, пациентам с воспалительными заболеваниями кишечника (язвенный колит, болезнь Крона) и синдромом мальабсорбции, пациентам с ХБП в преддиализном и диализном периодах, а также в случае необходимости получить быстрый эффект в виде восполнения запасов железа и повышения эффективности эритропоэза (например, перед большими оперативными вмешательствами)².

Во многих таких случаях применение ПЖВВ становится экономически эффективным. Однако доступность ПЖВВ часто ограничена в связи с отсутствием инфраструктуры для внутривенного введения препаратов в амбулаторных условиях. Кроме того, некоторые пациенты могут избегать ПЖВВ из-за опасения нежелательных реакций, включая обусловленные внутривенной инфузией или анафилаксией, шоком и смертью несмотря на то, что частота их развития крайне низка.

Следует отметить, что доступность ПЖВВ может снизить потребность в переливании препаратов крови, что предотвращает развитие нежелательных реакций, обусловленных использованием последних [254].

ПЖВВ должны назначаться только врачами, знакомыми с порядком применения тестовых доз, скоростью инфузии, максимально допустимыми дозами и редко возникающими нежелательными явлениями. Обычно стараются избегать ПЖВВ у пациентов, имеющих активную инфекцию, так как, по-видимому, многие возбудители инфекции могут развиваться быстрее в присутствии железа [255].

Для внутривенного введения используют железоуглеводные соединения (карбоксимальтозат, олигоизомальтозат, сахарат, глюконат и декстран железа). Углеводная оболочка стабилизирует комплекс и замедляет высвобождение железа в крови. Комплексы с низкой молекулярной массой, такие как глюконат железа, менее стабильны и быстрее высвобождают в плазму железо, которое в свободном виде может катализировать образование реактивных форм кислорода, вызывающих перекисное окисление липидов и повреждение тканей. Значительная часть дозы подобных ПЖВВ выводится

Таблица 11.1 Основные пероральные препараты, применяемые для лечения ЖДА, и содержание в них элементарного железа²

Препарат	Состав препарата (в 1 драже, 1 таблетке, в 1 мл капель или сиропа)	Форма выпуска и дозировка	Содержание элементарного железа
Железа сульфат + серин	Железа сульфат 47,2 мг, D, L серин 35,6 мг, сахарный сироп инвертный 151,8 мг, калия сорбат 1 мг в 1 мл капель	Капли для приема внутрь. • Грудные дети — 10-15 капель 3 раза в сутки • Дети дошкольного возраста — 25-35 капель 3 раза в сутки • Дети школьного возраста — 50 капель 3 раза в сутки	Fe ²⁺ : 9,48 мг в 1 мл
Железа сульфат + серин	Железа сульфат 171 мг, D, L серин 129 мг, сахарный сироп инвертный в 5 мл сиропа	Сироп, 100 мл во флаконе. • Для детей старше 2 лет и взрослых — 5 мл на 12 кг массы тела • Для детей дошкольного возраста — 5 мл 1-2 раза в сутки • Для детей школьного возраста — 5 мл 2-3 раза в сутки	Fe ²⁺ : 34 мг в 5 мл
Железа протеин сукцинилат	1 флакон (15 мл) содержит железа протеин сукцинилат 800 мг (эквивалентно 40 мг Fe³+), сорбитол, 1,4 г, пропиленгликоль 1 г, метилпарагидроксибензоат натрия 45 мг, пропилпарагидроксибеноат 15 мг, ароматизатор вишневый 60 мг, натрия сахаринат 15 мг, вода очищенная до 15 мл	Раствор для приема внутрь во флаконах по 15 мл, 800 мг железа протеин сукцинилат. • Взрослые 1-2 флакона в сутки в два приема. • Дети 1,5 мл/кг/сут., что эквивалентно 4 мг/кг/сут. Fe ³⁺ . • Беременные женщины для профилактики ЖДА по 1 флакону в сутки. Для лечения ЛДЖ и ЖДА по 1-2 флакона в сутки в 2 приема	Fe ³⁺ : 40 мг в 15 мл
Железа протеин сукцинилат + фолиновая кислота	1 флакон (15 мл) содержит железа протеин сукцинилат 800 мг (эквивалентно 40 мг Fe ³⁺), сорбитол, 1,4 г, пропиленгликоль 1 г, метилпарагидроксибензоат натрия 45 мг, пропилпарагидроксибеноат 15 мг, ароматизатор вишневый 60 мг, натрия сахаринат 15 мг, вода очищенная до 15 мл. Каждая крышка-дозатор содержит кальция фолинатапентагидрат 0,235 мг, что эквивалентно 0,2000 мг кальция фолината или 0,185 мг фолиновой кислоты, вспомогательные вещества: маннитол 99,8 мг	Раствор для приема внутрь во флаконах по 15 мл, 800 мг железа протеин сукцинилат. • Взрослые 1-2 флакона в сутки, в два приема. • Дети (с периода новорожденности) 1,5 мл/кг/сут., что эквивалентно 4 мг/кг/сут. Fe ³⁺ и 0,0235 мг/кг/сут. кальция фолинатапентагидрата, в 2 приема • Беременные женщины для профилактики ЖДА по 1 флакону в сутки. Для лечения ЛДЖ и ЖДА по 1-2 флакона в сутки в 2 приема	Fe ³⁺ : 40 мг в 15 мл
Железа (III) гидроксид полимальтозат**	Железа (III) гидроксид полимальтозат 35,7 мг в 1 мл, сахароза 200 мг	Информация по форме выпуска и дозировке представлена частично в исходном документе	Информация по содержанию элементарного железа представлена частично
Железа (III) гидроксид полимальтозат	Железа (III) гидроксид полимальтозат 178,6 мг, сахароза 50 мг в 1 мл раствора. В 1 мл 20 капель	Капли для приема внутрь, дети 1-го года 10-20 капель, дети от 1 до 12 лет 20-40 капель, дети старше 12 лет и взрослые 40-120 капель	Fe ³⁺ : 50 мг в 1 мл. 1 капля 2,5 мг Fe ³⁺
Железа сульфат	Железа сульфат 247,25 мг	Таблетки с пролонгированным высвобождением, покрытые пленочной оболочкой, 10 таблеток в блистере, 3 блистера в упаковке. Взрослые и дети старше 10 лет 1-2 таблетки в сутки. Дети от 6 до 10 лет — 1 таблетка в сутки	Fe ²⁺ : 80 мг
Железа сульфат + Фолиевая кислота	Железа сульфат 247,25 мг + фолиевая кислота 0,35	Таблетки с модифицированным высвобождением, покрытые пленочной оболочкой, 10 таблеток в блистере, 3 блистера в упаковке. Взрослые 1 таблетка в день или через день на протяжении двух последних триместров беременности	

Таблица 11.1. Продолжение

Препарат	Состав препарата (в 1 драже, 1 таблетке, в 1 мл капель или сиропа)	Форма выпуска и дозировка	Содержание элементарного железа
Железа глюконат + Марганца глюконат + Меди глюконат	В 10 мл раствора содержится: 50 мг глюконата железа, 1,33 мг глюконата марганца, 0,7 мг глюконата меди, глицерол, глюкоза, сахароза, лимонная кислота, цитрат натрия и др.	Раствор для приема внутрь, ампулы по 10 мл, по 20 шт. в упаковке. Дети в возрасте от 3 мес. до 1-го года 3 мг/кг массы тела, дети в возрасте 6-12 лет 2 ампулы в сутки, дети старше 12 и взрослые 2-4 амп. в сутки	Fe ²⁺ : 5 мг в 1 мл
Железа фумарат + Фолиевая кислота	Фумарат железа 163, 56 мг, фолиевая кислота 0,5 мг	Капсулы, 10 капсул в блистере, 3 блистера в упаковке. Взрослым по 1 капсуле 1 раз в сутки	Fe ²⁺ : 50 мг в 1 капсуле
Железа сульфат + Фолиевая кислота	Сульфат железа 114 мг, фолиевая кислота 0,8 мг, аскорбиновая кислота	Таблетки с модифицированным высвобождением, по 50 шт. в упаковке. Взрослые 1 таблетка 1 раз в сутки	Fe ²⁺ : 36,77 мг в 1 таблетке
Железа сульфат + Аскорбиновая кислота	Железа сульфат, эквивалентном 100 мг, аскорбиновая кислота 60 мг	Таблетки, покрытые пленочной оболочкой, в упаковке 30, 50, 100 шт. Взрослым и подросткам старше 12 лет 2 таблетки в сутки	Fe ²⁺ : 100 мг в 1 таблетке
Железа (III) гидроксид полимальтозат**	Железа (III) гидроксид полимальтозат 357 мг	Жевательные таблетки, 10 таблеток в блистере, 3 блистера в упаковке. Дети старше 12 лет и взрослые 1-3 таблетки в сутки	Fe ³⁺ : 100 мг в 1 таблетке
Железа (III) гидроксид полимальтозат** + фолиевая кислота	Железа (III) гидроксид полимальтозат 357 мг + 0,35 мг фолиевой кислоты	Жевательные таблетки, 10 таблеток в блистере, 3 блистера в упаковке. Дети старше 12 лет и взрослые 1-3 таблетки в сутки	Fe ³⁺ : 100 мг в 1 таблетке
Железа (III) гидроксид полимальтозат	Железа (III) гидроксид полимальтозат 400 мг	Жевательные таблетки, 10 таблеток в стрипе, 3 стрипа в упаковке. Дети старше 12 лет и взрослые 1-3 таблетки в сутки	Fe ³⁺ : 100 мг в 1 таблетке
Железа (III) гидроксид полимальтозат	Железа (III) гидроксид полимальтозат 200 мг, сахароза 1,0 г в 5 мл сиропа	Сироп, 200 мг — 5 мл. 100 мл во флаконе. Дети до года 2,5-5 мл, дети от года до 12 лет 5-10 мл, дети старше 12 лет и взрослые 10-30 мл	Fe ³⁺ : 50 мг в 5 мл

Примечание: ** — препарат входит в перечень жизненно необходимых и важнейших лекарственных препаратов. **Сокращения:** ЖДА — железодефицитная анемия, ЛДЖ — латентный дефицит железа.

через почки в первые 4 ч после введения препарата и не используется для эритропоэза. Недостатком декстрана железа, который имеет высокую молекулярную массу и стабильность, считают повышенный риск возникновения аллергических реакций [256]. Карбоксимальтозат железа представляет собой стабильный высокомолекулярный комплекс, который обеспечивает медленное и физиологичное высвобождение железа. Он обладает меньшим иммуногенным потенциалом и в отличие от сахарата и глюконата железа может вводиться в высокой дозе [257]. 1 мл железа карбоксимальтозата содержит 50 мг железа. Дозу препарата подбирают с использованием пошагового подхода: определение индивидуальной потребности в железе, расчет и назначение дозы (доз) железа, оценка насыщенности организма пациента железом после введения. При разовом введении железа карбоксимальтозата не должны превышаться следующие количества вводимого железа: 15 мг железа на 1 кг массы тела (при назначении в виде внутривенного введения болюсом) или 20 мг

железа на 1 кг массы тела (при назначении в виде внутривенной инфузии). Максимальная рекомендуемая суммарная доза препарата составляет 1000 мг железа в неделю. Несмотря на то, что после внедрения железа карбоксимальтозата в клиническую практику сообщалось о случаях развития гипофосфатемии [258], в последующем отмечали лишь редкие случаи развития такой нежелательной реакции, а ее клиническое значение требует уточнения [259, 260]. Считается, что у отдельных пациентов может быть обоснованным наблюдение за концентрацией фосфата в крови, например, в случае пограничной исходной концентрации фосфатов в крови, а также при необходимости повторного введения железа карбоксимальтозата и железа (III) гидроксид олигомальтозата [261].

Практическое применение препаратов железа для внутривенного введения

Во всех случаях, когда врач назначает ПЖВВ необходимо наличие медицинского специально обученного персонала и соответствующего оборудова-

ния для вмешательств в случае развития редких, но потенциально угрожающих жизни нежелательных явлений, включая средства для лечения анафилактических реакций, оборудование для проведения реанимационных мероприятий и условия для интенсивной терапии. Следует отметить, что для подавляющего числа пациентов, которым вводят ПЖВВ, никогда не потребуется использования таких средств.

Предлагают следующие подходы к лечению в случае развития нежелательных явлений [262-265]:

Преходящее повышение температуры тела до 38 °С и более, артралгии, миалгии или ощущение прилива крови к голове при применении ПЖВВ обычно отмечается в 0,5-1% случаев. При развитии таких симптомов в отсутствие артериальной гипотонии, одышки, тахикардии, хрипов в легких, стридорозного дыхания или периорбитального отека, обычно временно прекращают введение препарата и наблюдают за состоянием пациента.

Не рекомендуется назначать антигистаминные препараты или другие средства, так как в таких случаях они в лучшем случае не улучшают клинических симптомов.

Если указанные симптомы проходят, возобновляют инфузию, доводя ее до конца, что чаще всего удается сделать.

Если указанные симптомы прогрессируют, применяю тактику, предусмотренную для случаев более тяжелых нежелательных явлений.

Если указанные симптомы не изменяются, можно внутривенно ввести метилпреднизолон и продолжить наблюдение за пациентом в течение 30 мин, и в последующем предпринять попытку повторного введения препарата железа. Кроме того, возможно назначение приема короткого курса кортикостероидов.

При развитии более тяжелых или истинно анафилактических реакций тактика лечения должна соответствовать стандартной тактике лечения таких анафилактических реакций.

Риск развития инфекций при внутривенном введении препаратов железа

Известно, что бактериям и другим инфекционным агентам железо требуется как фактор роста, а пациенты с врожденным гемохроматозом или перегрузкой железа предрасположены к развитию тяжелых бактериальных инфекций [266]. Такие наблюдения позволяют предположить, что применение терапевтических доз препаратов железа может быть связано с увеличением риска развития инфекций. Однако по мнению экспертов такой риск при внутривенном введении железа можно считать незначительным. Так, несмотря на то что результаты недавно опубликованного метаанализа РКИ подтвердили увеличение ОР развития инфекций при внутривенном применении

препаратов железа, абсолютное увеличение риска было небольшим и составляло 0,8% [255].

Как бы там ни было, применение ПЖВВ откладывают у пациентов с активной инфекцией до полного разрешения инфекции.

Таким образом, во многих клинических ситуациях ПЖВВ могут быть средствами первого ряда, применение которых при соблюдении правил их введения и при выборке соответствующих доз, у большинства пациентов с ДЖ будет не только эффективно, но и безопасно.

Оценка эффективности лечения железодефицитных состояний

Обычная ответная реакция на применение препаратов железа:

Исчезновение пагофагии (извращенное желание есть лед) сразу после начала применения препаратов железа, которое отмечается до развития каких-либо изменений гематологических показателей, в частности ответной реакции в виде увеличения количества ретикулоцитов в периферической крови.

Улучшение самочувствия в течение нескольких дней после начала лечения.

Существенное уменьшение или прекращение синдрома беспокойных ног в течение 72 ч после введения препарата железа, которое нередко отмечается уже в течение первой ночи после введения препарата.

У пациентов с умеренной или тяжелой анемией будет отмечаться умеренный ретикулоцитоз, максимальное значение которого достигается примерно на 7-10-й день после начала терапии ПОПЖ. При слабовыраженной анемии ретикулоцитоз может быть небольшим или отсутствовать.

Концентрация гемоглобина в крови увеличивается медленно и обычно нарастает примерно через 1-2 нед. после начала терапии ПОПЖ, увеличиваясь примерно на 10 г/л к концу 4-й нед.

Дефицит гемоглобина должен быть уменьшен в 2 раза примерно через 1 мес. после начала терапии ПОПЖ, и концентрация гемоглобина должна нормализоваться через 6-8 нед. от начала терапии.

Показатели, отражающие запасы железа, будут улучшаться, включая концентрацию СФ и НТЖ.

Обычно у пациентов с ДЖ отмечается снижение числа сосочков языка, что может использоваться как показатель длительности симптомов. Обычно снижение числа сосочков начинается на кончике языка и по боковой поверхности и далее распространяется на задние и центральные участки. После восстановлении запасов железа отмечается относительно быстрое восстановление числа сосочков (в течение нескольких недель или месяцев).

Наблюдение за концентрацией гемоглобина и достижением нормальных значений показателей метаболизма железа.

Таблица 11.2

Некоторые препараты железа для парентерального введения²

Название препарата	Состав препарата	Количество препарата в ампуле
Железа (III) гидроксид сахарозный комплекс**	Железа (III) гидроксид сахарозный комплекс	100 мг в 5 мл
Железа (III) гидроксид декстран	Железа (III)-гидроксид декстран (низкомолекулярный)	100 мг в 2 мл
Железа карбоксимальтозат**	Железа (III)-карбоксимальтозат	500 мг в 10 мл
Железа (III) гидроксид олигоизомальтозат**	Железа (III) гидроксид олигоизомальтозат	500 мг в 5 мл

Примечание: ** — препарат входит в перечень жизненно необходимых и важнейших лекарственных препаратов.

Тактика наблюдения за пациентами обычно зависит от тяжести анемии.

Пациентов, которые принимают ПОПЖ, обычно повторно обследуют через 2 нед. после начала терапии препаратами железа. При таком обследовании проверяют концентрацию гемоглобина в крови и количество ретикулоцитов, а также оценивают переносимость принимаемых препаратов железа. При применении ПЖВВ пациентов обычно обследуют повторно через 4-8 нед. после введения препарата железа. Показатели метаболизма железа не определяют ранее, чем через 4 нед. после введения препарата железа, так как ПЖВВ изменяет показатели, отражающие состояние метаболизма железа в организме [41].

При продолжающейся потери железа (за счет хронического кровотечения) тактика лечения пациента должна в первую очередь включать остановку кровотечения, а не восполнение потерь железа. В то же время имеются клинические ситуации, когда потери крови нельзя прекратить (например, врожденная геморрагическая телеангиоэктазия, патологические маточные кровотечения, хронический гемодиализ), и в таких случаях могут потребоваться частые посещения пациентом медицинского учреждения для установления эффективной дозы препарата железа и обучения пациента подходам к наблюдению за выраженностью кровопотери. Если такие пациенты переносят ПОПЖ, может быть обосновано принимать одну таблетку препарата железа через день или 2 раза в неделю. Очевидно, что прием ПОПЖ не рекомендуют, если такая терапия неэффективна или вредна (например, после операций шунтирования желудка или при воспалительных заболеваниях кишечника) или в случае ее непереносимости.

Препараты железа обычно применяют до нормализации концентрации СФ и НТЖ. У некоторых пациентов может потребоваться добиваться восстановления запасов железа до уровня, превышающего средний уровень, например, при наличии телеангиоэктазий в ЖКТ, для которых характерны частые ЖКК. В случаях несоответствия концентрации СФ и НТЖ ориентируются на значение НТЖ.

СФ представляет собой белок острой фазы и может быть длительно повышен у пациентов с сопутствующим воспалительным заболеванием, даже в случае низких запасов железа.

Следует отметить, что обычная диета содержит количества железа, достаточные для удовлетворения физиологических потребностей в железе.

В некоторых случаях концентрация гемоглобина и запасы железа не нормализуются, несмотря на применение ПОПЖ. Такая ситуация может быть обусловлена несколькими причинами:

- пациент не принимает ПОПЖ (например, вследствие нежелательных явлений);
 - сниженная абсорбция ПОПЖ;
- потеря железа вследствие кровопотери превышает поступление железа;
 - неправильно установленный диагноз;
- установление нескольких диагнозов, объясняющих снижение запасов железа (особенно у пожилых лиц);
- наличие воспаления, блокирующего регуляцию поступления железа из ЖКТ;
- снижение эффективности терапии из-за рецидива кровотечения.

В случае недостаточного увеличения концентрации гемоглобина и запасов железа при применении ПОПЖ в отсутствие явных объяснений неэффективности терапии целесообразно исключить такие заболевания, как целиакия, аутоиммунный гастрит и/или инфекция *H. pylori*, каждое из которых может сопровождаться нарушением абсорбции препаратов железа.

У отдельных пациентов с анемией, при отсутствии ответной реакции на прием ПОПЖ вследствие блокады усвоения железа за счет воспаления, может быть эффективно применение ПЖВВ. Сведения по некоторым парентеральным препаратам железа представлены в таблице 11.2.

Раздел 12. Периоперационная анемия

ЖДА — распространенное явление у пациентов, которым планируется выполнение хирургических вмешательств [267, 268]. Наличие анемии в предоперационном периоде негативно влия-

ет на исход операций [269-271], что обусловливает необходимость своевременной диагностики (оптимально — сразу после определения показаний к плановой операции) и коррекции анемии на этапе первичной медико-санитарной помощи. Современный подход к коррекции ЖДА при подготовке к плановым оперативным вмешательствам предполагает заблаговременное восполнение тканевых запасов железа с целью нормализации концентрации гемоглобина и сокращения количества трансфузий эритроцитсодержащих компонентов донорской крови [272, 273]. Выбор тактики коррекции ЖДА зависит от характера заболевания, по поводу которого планируется выполнение хирургического вмешательства (в частности — возможности отложить операцию), сроков до оперативного вмешательства, степени тяжести анемии, предполагаемой величины кровопотери, а также индивидуальной переносимости и эффективности различных лекарственных форм препаратов железа [272].

12.1. Предоперационная анемия

Частота анемии у пациентов с планируемыми хирургическими вмешательствами значительно превышает аналогичный показатель в общей популяции и варьирует, по данным различных исследований, в диапазоне от 12 до 70%, при этом на ЖДА приходится до 60-75% случаев предоперационных анемий [267, 268]. Данные метаанализов свидетельствуют о наличии взаимосвязи между предоперационной анемией (вне зависимости от этиологии) и повышенным риском развития периоперационных осложнений, преимущественно связанных с острым ишемическим поражением сердца, головного мозга и почек, а также повышенным показателем трансфузий эритроцитсодержащих компонентов донорской крови, внутрибольничной и отдаленной летальности [269]. Значительные различия в методологии проведенных исследований, а также гетерогенность групп пациентов (по этиологии анемии, виду хирургического вмешательства и т.д.) не позволяют рассматривать предоперационную анемию в качестве независимого фактора риска неблагоприятного исхода оперативного вмешательства вне ассоциации с характером течения основного заболевания, маркером тяжести которого она может являться. Тем не менее, проведение терапии, направленной на коррекцию предоперацинной анемии (в том числе, ЖДА), рекомендуется всем пациентам при предполагаемой величине интраоперационной кровопотери, превышающей 500 мл (или 10% объема циркулирующей крови) [272]. К оперативным вмешательствам с предполагаемой высокой кровопотерей относятся: кардиохирургические, ортопедические, онкологические,

некоторые гинекологические, урологические, нейрохирургические.

Скрининг на наличие анемии (информация по диагностике ЖДА представлена в главе 6) целесообразно проводить максимально рано, оптимально — в момент принятия решения о необходимости выполнения оперативного вмешательства. При подтверждении диагноза ЖДА требуется установить и, по возможности, устранить ее причину. Учитывая, что подавляющее число хирургических вмешательств являются плановыми, лечение ЖДА следует проводить во время нахождения пациента в листе ожидания операции [274].

Для лечения предоперационной ЖДА используются ПОПЖ и ПЖВВ (в отдельных случаях — в сочетании с рекомбинантным эритропоэтином), в то время как трансфузии эритроцитсодержащих компонентов донорской крови должны быть сведены к минимуму и выполняться строго по показаниям: анемия тяжелой степени с концентрацией гемоглобина <80 г/л, низкая адаптация к анемии (например, при быстром развитии анемии вследствие острой кровопотери), а также наличие острых симптомов гипоксии жизненно-важных органов (например, острый коронарный синдром) [275-278]. Целевым показателем гемоглобина при лечении предоперационной ЖДА является концентрация, равная 130 г/л, вне зависимости от пола (с учетом большей относительной кровопотери у женщин, обусловленной меньшим объемом циркулирующей крови) [279-281].

При сроке ожидания операции >6 нед., а также наличия ЖДА легкой или средней степени (концентрация гемоглобина >80 г/л) наиболее рациональным подходом является проведение терапии ПОПЖ в стандартной дозе (60-120 мг) в ежедневном режиме, либо в режиме приема препарата через день [282, 283]. На фоне терапии ПОПЖ, за 2-4 нед. до планируемой операции, необходимо повторное исследование гемограммы — при отсутствии повышения концентрации гемоглобина, а также при плохой переносимости ПОПЖ рекомендуется переход на ПЖВВ [272]. При недостижении целевых показателей гемоглобина к моменту запланированного хирургического вмешательства, рекомендуется рассмотреть возможность отложить плановую операцию до коррекции анемии.

В случае, когда время ожидания операции составляет <6 нед., при наличии ЖДА тяжелой степени (концентрация гемоглобина <80 г/л), а также при продолжающейся кровопотере обоснованным является назначение ПЖВВ в качестве терапии первой линии [284, 285]. Проведение инфузии ПЖВВ допустимо в амбулаторной режиме под наблюдением медицинского персонала, име-

ющего опыт купирования нежелательных, в том числе анафилактических, реакций.

Для достижения клинически значимого повышения концентрации гемоглобина за ограниченный временной период, а также высокой приверженности пациентов к терапии целесообразно применять высокодозные препараты железа карбоксимальтозат железа. Такая стратегия позволяет ввести 1000 мг железа за одну инфузию без предварительной тест-дозы с минимальной частотой нежелательных явлений, что объясняется медленным высвобождением железа из высокомолекулярного стабильного комплекса, по структуре сходного с СФ. Частота острых аллергических реакций меньше при использовании карбоксимальтозата железа по сравнению с железосахарозными комплексами. Кроме того, проведенный в нашей стране сравнительный фармакоэкономический анализ применения карбоксимальтозата железа и препаратов железосахарозного комплекса, продемонстрировал экономическую выгоду при использовании карбоксимальтозата железа².

При необходимости выполнения срочных или экстренных хирургических вмешательств коррекция ЖДА в предоперационном периоде, как правило, невозможна, в связи с чем, при наличии показаний, прибегают к трансфузиям эритроцитсодержащих компонентов донорской крови.

В отдельных случаях допускается коррекция предоперационной ЖДА с помощью ПЖВВ в сочетании с рекомбинантным эритропоэтином, однако, четкие показания к этой терапии не разработаны. Применение рекомбинантного эритропоэтина может иметь преимущества в случае сочетания ЖДА с ХБП, недостаточного повышения концентрации гемоглобина на фоне монотерапии ПЖВВ, а также у пациентов, которым планируется кардиохирургическое вмешательство с предполагаемой массивной интраоперационной кровопотерей [286-288]. При наличии показаний к назначению рекомбинантного эритропоэтина необходима консультация профильного специалиста (гематолог, нефролог, кардиохирург и т.д.). Во всех случаях применения рекомбинантного эритропоэтина необходимо обеспечить адекватную профилактику тромбоэмболических осложнений.

12.2. Латентный дефицит железа в предоперационном периоде

Пациентам, которым планируется выполнение хирургического вмешательства с предполагаемым объемом кровопотери более 500 мл, при отсутствии анемии рекомендовано исследование метаболизма железа с целью исключения ЛДЖ [272, 289]. При выявлении критериев ЛДЖ и периоде ожидания операции >4 нед. рекомендуется применение ПОПЖ

в дозе 50-60 мг/сут. с режимом приема препарата через день до восполнения депо железа, при сроке ожидания операции <4 нед. — допустимо проведение однократной инфузии ПЖВВ в дозе 100-500 мг.

12.3. Послеоперационная анемия

Анемия в послеоперационном периоде характерна для большинства пациентов, перенесших крупные операции [290]. Помимо периоперационной кровопотери, развитию анемии могут способствовать дефицит поступления гемопоэтических факторов (фолатов, витамина В12) вследствие пониженного питания, частый забор крови для лабораторных исследований, а также развитие воспалительного ответа на фоне перенесенного хирургического вмешательства, что приводит к увеличению синтеза гепсидина, и, как следствие, ингибированию всасывания и рециркуляции железа [291]. Негативные эффекты послеоперационной анемии проявляются более длительным периодом восстановления после операции, развитием послеоперационных осложнений (как хирургических, так и нехирургических) и повышенной летальностью.

Скрининг на наличие ЖДА необходимо поводить всем пациентам, перенесшим хирургические вмешательства с объемом кровопотери более 500 мл, а также пациентам с предоперационной анемией. Исследование метаболизма железа с целью оценки тканевых запасов может быть неинформативно в первые 7-14 дней после операции вследствие развития воспалительного ответа на оперативную травму (абсолютный ДЖ может маскироваться повышением концентрации СФ в острой фазе воспаления). В случае диагностики ЖДА, при отсутствии инфекционных осложнений, терапией первой линии являются ПЖВВ в связи с низкой биодоступностью ПОПЖ в послеоперационном периоде [292-295]. В ряде исследований продемонстрировано, что при использовании высокодозных форм ПЖВВ снижается потребность в трансфузиях компонентов донорской крови, отмечается более выраженное повышение концентрации гемоглобина и создаются дополнительные удобства для пациента (однократное введение препарата в стационаре вместо нескольких введений препаратов сначала в стационаре, а затем после выписки — на амбулаторном этапе) [296-298].

Таким образом, диагностика и лечение ЖДА в периоперационном периоде — это задачи, входящие в компетенцию специалистов первичного звена здравоохранения. Своевременное выявление и коррекция ДЖ позволяет сократить потребность в трансфузиях эритроцисодержащих компонентов донорской крови, уменьшить риски послеоперационных осложнений, а также ускорить период восстановления после оперативного вмешательства [299-301].

Раздел 13. Профилактика железодефицитных состояний

Профилактические меры ДЖ включают несколько основных направлений: диетические рекомендации, обогащение пищевых продуктов железом, саплементация железа с помощью биологически активных добавок к пище и применение профилактических доз железа.

Первичная профилактика ДЖ основывается на адекватном и сбалансированном питании, соответствующем физиологическим потребностям человека в соответствии с возрастом и полом. Физиологическая потребность в железе (усредненная величина необходимого поступления с пищей железа) для взрослых — 10 мг/сут. (для мужчин) и 18 мг/сут. (для женщин); для детей (в зависимости от пола ребенка) — от 4 до 18 мг/сут.³.

В среднем взрослый человек нуждается в 1-2 мг железа в сутки, ребёнок — от 0,5 до 1,2 мг. Следует отметить, что всасывается только 10-15% железа, поступающего с пищей, преимущественно в ДПК и верхней части тощей кишки².

Для повышения поступления и усвоения железа рекомендуется употреблять продукты, богатые гемовым железом (красное мясо, печень, птица, рыба), так как оно обладает более высокой биодоступностью по сравнению с негемовым железом (растительные источники: фасоль, чечевица, шпинат). Усилить всасывание негемового железа можно путём сочетания с продуктами, богатыми витамином С (цитрусовые, томаты) [302-305]. Согласно методическим рекомендациям ФГБУН "ФИЦ питания и биотехнологии" суточная потребность в элементарном железа для мужчин составляет 10 мг в сут., для женщин 18 мг в сут., для беременных в І триместре 18 мг в сут., во ІІ-ІІІ триместрах — 33 мг в сут.³.

Обогащение продуктов питания железом является важным инструментом общественного здравоохранения, особенно в регионах с высокой распространенностью анемии. ВОЗ рекомендует добавлять железо в основные продукты питания, такие как мука, рис и кукуруза. Данные меры показали свою эффективность в снижении распространённости ЖДА среди общей популяции [304, 306, 307].

Особое внимание профилактике ДЖ следует уделять следующим группам риска²:

- Дети, находящиеся на грудном и смешанном вскармливании с 4-мес. возраста до введения прикорма рекомендуется профилактическая доза железа 1 мг/кг массы тела в сутки.
- Недоношенные дети с 1-го мес. жизни и до введения железо-обогащённых смесей или прикорма рекомендуется 2 мг железа/кг массы тела в сутки.

- Дети от 6 до 12 мес. ежедневная потребность в железе составляет 11 мг. Предпочтительно назначение красного мяса и овощей с высоким содержанием железа в качестве прикорма, при необходимости дополнительно назначают железо в форме капель или сиропов.
- Дети от 1 до 3 лет ежедневная потребность в железе 7 мг, рекомендуется обеспечить поступление через диету, богатую железом и витамином С, возможно дополнительное применение жидких форм железа или поливитаминов.
- Взрослые пациенты с хроническими заболеваниями (хроническая кровопотеря, заболевания ЖКТ с мальабсорбцией, пациенты на гемодиализе, онкологические пациенты, пациенты с ХСН).
- Вегетарианцы и веганы, а также регулярные доноры крови.

Известно, что железосодержащие препараты в ряде случаев могут вызывать нежелательные явления, которые нарушают приверженность пациента к профилактическим курсам приема по причине превышения безопасного уровня суточного потребления.

Согласно научному заключению Европейского управления по безопасности пищевых продуктов (European Food Safety Authority, EFSA) о верхнем допустимом уровне потребления железа от 12.06.2024 установлено, что системное избыточное потребление железа может приводить к токсическому поражению органов, однако верхний допустимый уровень потребления установить не представляется возможным. EFSA был установлен безопасный уровень потребления железа (при котором не возникают нежелательные явления) в количестве до 40 мг элементарного железа день для взрослых (включая беременных и кормящих женщин) [308].

В РФ введено понятие "верхний допустимый уровень потребления" — наибольший уровень суточного потребления пищевых и биологически активных веществ, который не представляет опасности развития неблагоприятных воздействий на показатели состояния здоровья практически у всех лиц старше 18 лет из общей популяции. Для железа этот показатель установлен на уровне 40 мг в сут. для женщин и 20 мг в сут. для мужчин¹⁴.

Институт медицины США (The Institute of Medicine, IOM) рассматривал эффекты со стороны ЖКТ как критические нежелательные явления, на которых основывается верхний допустимый уровень потребления железа. Было отмечено, что нежелательные явления со стороны ЖКТ проявляют-

Единые санитарно-эпидемиологические и гигиенические требования к продукции (товарам), подлежащей санитарно-эпидемиологическому надзору (контролю). Утверждены Решением Комиссии Таможенного союза 28.05.2010 №299 https://www.consultant.ru/document/cons_doc_LAW_101851/3e2d/24b83b03df24597b277cRc5fda6e57ab8c9d/

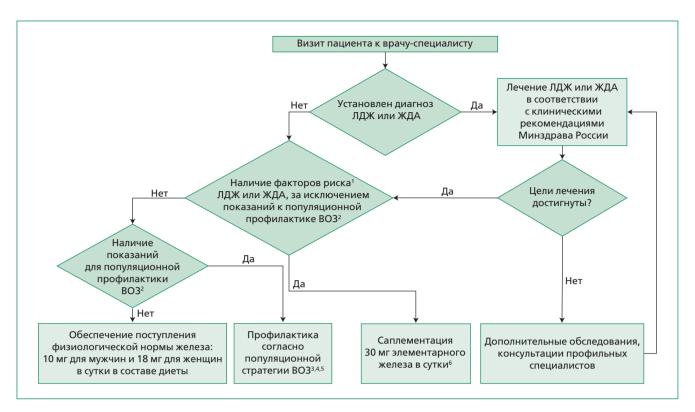


Рис. 13.1. Алгоритм профилактики и лечения ЛДЖ и ЖДА у взрослых.

¹—см. таблицу с факторами риска (таблица 13.1); ²—беременные женщины и менструирующие женщины репродуктивного возраста в регионах с распространенностью анемии в этих группах >20%; ³— беременные женщины: 30 мг элементарного железа + 400 мкг фолатов в сутки на протяжении всей беременности; ⁴—небеременные менструирующие женщины репродуктивного возраста при распространенности анемии 20-39%: 60 мг элементарного железа + 2800 фолатов в неделю в течение 3-х полных мес. в году, далее 3 мес. перерыв, далее профилактику необходимо повторить; ⁵— небеременные менструирующие женщины репродуктивного возраста при распространенности анемии 40% и выше: 30-60 мг элементарного железа в сутки в течение 3 мес. в году; ⁶— в ежедневном режиме, либо в режиме приема через день под контролем сывороточных показателей метаболизма железа. Сокращения: ВОЗ — Всемирная организация здравоохранения, ЖДА — железодефицитная анемия, ЛДЖ — латентный дефицит железа.

ся в основном у лиц, потребляющих высокие дозы дополнительного железа натощак [308]. По этой причине отсутствие взаимодействий хелатных соединений железа с компонентами пищи дает возможность принимать их во время еды и улучшить переносимость железа. По данным ІОМ, в ходе контролируемого двойного слепого перекрестного исследования был определен наименьший наблюдаемый уровень нежелательных явлений для дополнительного приема железа в количестве 60 мг/день (в виде солей железа), при этом верхний допустимый предел потребления для взрослых установлен на уровне 45 мг в день [308].

Популяционная стратегия ВОЗ по профилактике алиментарной анемии подразумевает прием 30-60 мг элементарного железа в сутки в зависимости от распространенности ЖДА в конкретной популяции¹⁵. Принимая во внимание имеющиеся данные

по безопасности доза элементарного железа 30 мг в сут. может считаться оптимальной для профилактики ДЖ у лиц, имеющих факторы риска его развития. Такая доза может быть покрыта саплементацией железа в составе биологически активной добавки к пище, зарегистрированных в установленном порядке на территории РФ, в которых железо может сочетаться с витамином С, фолиевой кислотой и витаминами группы В, участвующими в кроветворении.

В последнее время среди новых соединений железа интерес представляет хелатная форма — бисглицинат железа. В рамках исследований было показано, что бисглицинат железа в меньшей дозе обладает сравнимой эффективностью с другими солями железа и более благоприятным профилем безопасности

В сравнительном исследовании эффективности бисглицината и сульфата железа при анемии средней степени тяжести у детей была изучена биодоступность бисглицината железа, которая со-

World Health Organization. Nutritional Anaemias: Tools for Effective Prevention and Control. World Health Organization; 2017. https://iris.who.int/ handle/10665/259425.

Таблица 13.1

Группы риска по развитию ДЖ у взрослых [313, 314]

1	1. Любая менструирующая девушка или женщина репродуктивного возраста, в том числе планирующая беременность. 2. Наличие факторов риска аномальных маточных кровотечений по классификации PALM-COEIN.
2	Беременные и лактирующие (ДЖ следует выявлять и корректировать как можно раньше, в I триместре беременности, поскольку он часто трансформируется в ЖДА). Особенно при коротких интервалах между беременностями (менее 18 мес. 18), многоплодная беременность
3	Пожилые пациенты, особенно с наличием коморбидных заболеваний и ГС
4	Спортсмены
5	Вегетарианцы и веганы
6	Постоянные доноры крови
7	Пациенты с хроническим геморрагическим диатезом (например, с болезнью Виллебранда или гемофилией)
8	Пациенты, проходящие длительную терапию антикоагулянтами, противовоспалительными, антитромбоцитарными препаратами, антацидами или ИПП
9	Пациенты, с заболеваниями ЖКТ, вызывающими хроническую кровопотерю или мальабсорбцию: 1. Перенесшие операцию (резекции, шунтирующие операции) на желудке и кишечнике в анамнезе по медицинским показаниям, включая ожирение; 2. Опухоли; 3. Эрозивно-язвенные поражения (пептические, ишемические, гормонально- и НПВС-индуцированные язвы, язвенный колит, язвы Кэмерона при грыжах пищеводного отверстия диафрагмы); 4. Сосудистые поражения (ангиоэктазии, ангиодисплазии, сосудистые мальформации, варикозно расширенные вены ЖКТ, GAVE-синдром (арбузный желудок), диффузная кровоточивость на фоне приёма антикоагулянтов и антиагрегантов, постлучевая проктопатия, хронический кровоточащий геморрой; 5. Глистная инвазия (анкилостомоз и др.); 6. Атрофический гастрит (аутоиммунный гастрит, <i>H. pylori</i> — ассоциированный хронический гастрит); 7. Медикаментозная гипохлоргидрия на фоне приема ИПП; 8. Энтеропатии (целиакия, болезнь Крона, болезнь Уиппла, синдром избыточного бактериального роста, НПВС-индуцированная энтеропатия).
10	Заболевания мочеполовой системы, сопровождающиеся гематурией: 1. Опухоли 2. Гематурический нефрит 3. IgA-нефропатия 4. Мочекаменная болезнь
11	Заболевания дыхательных путей, сопровождающиеся хронической кровопотерей: 1. Повторяющиеся носовые кровотечения 2. Опухоли бронхолёгочной системы 3. Изолированный легочной сидероз
12	Заболевания сердечно-сосудистой системы: 1. XCH
13	Социально незащищённые слои населения. Пациенты с синдромом мальнутриции.

Сокращения: ГС — гериатрический синдром, ДЖ — дефицит железа, ЖДА — железодефицитная анемия, ЖКТ — желудочно-кишечный тракт, ИПП — ингибиторы протонной помпы, НПВС — нестероидные противовоспалительные средства.

ставила 90,9%, что оказалось в 3,4 раза выше биодоступности сульфата железа, которая в данном исследовании была 26,7% [309].

Кроме того, показано, что применение хелатной формы бисглицината железа у пациентов с легкой степенью ЖДА, не связанной с химиотерапией у онкологических пациентов, в курсовой дозе 1120 мг (по схеме 28 мг/сут. 20 дней, далее 14 мг/сут. в течение 40 дней) также эффективно, как и применение сульфата железа в курсовой дозе 6300 мг (по схеме 105 мг/сут./60 дней). При этом частота нежелательных явлений была в 2 раза ниже в группе пациентов, принимающих бисглицинат железа [310].

По данным метаанализа 17 РКИ с участием 2191 пациентов, в которых сообщалось о концентрации гемоглобина или СФ после приема бисглицината железа в течение как минимум 4 нед. по сравнению с другими добавками железа в любой дозировке и с любой частотой приема было установлено, что прием бисглицината железа в течение 4-20 нед. приводил к статистически значимо большему повышению концентрации гемоглобина у беременных женщин (стандартизированная разность средних 5,4 г/л; 95% ДИ 0,15-0,94; p<0,01) и меньшему количеству зарегистрированных нежелательных явлений со стороны ЖКТ (отношение частоты возникновения, 0,36; 95% ДИ 0,17-0,76; p<0,01) по сравнению с другими соединениями железа (сульфат железа, фумарат железа, аскорбат железа, глицин сульфат железа, карбонильное железо и пр.) [311].

World Health Organization. Nutritional Anaemias: Tools for Effective Prevention and Control. World Health Organization; 2017. https://iris.who.int/ handle/10665/259425.

Таблица 14.1

Критерии оценки качества оказания медицинской помощи пациенту с ЖДА

N п/п	Критерии оценки качества	
1.	Выполнен физикальный осмотр	
2.	Выполнен ОАК расширенный	Да/Нет
3.	Выполнено исследование СФ и СЖ и рассчитан НТЖ	Да/Нет
4.	Выполнены исследование общего белка в крови, исследование альбумина в крови, исследование общего билирубина в крови, исследование прямого (связанного) билирубина в крови, исследование непрямого (свободного) билирубина в крови, определение активности аспартатаминотрансферазы в крови, определение активности аланинаминотрансферазы в крови, исследование креатинина в крови, исследование мочевины в крови, определение активности щелочной фосфатазы в крови, определение активности желочной фосфатазы в крови, определение активности желочной фосфатазы в крови,	Да/Нет
5.	Выполнены ЭГДС и колоноскопия (женщинам в постменопаузе и всем мужчинам)	Да/Нет
6.	Назначены препараты двухвалентного железа (перорально) или препараты трехвалентного железа, (в зависимости от медицинских показаний и при отсутствии медицинских противопоказаний)	Да/Нет

Сокращения: НТЖ — насыщение трансферрина железом, ОАК — общий анализ крови, СЖ — сывороточное железо, СФ — сывороточный ферритин, ЭГДС — эзофагогастродуоденоскопия.

Хелатное соединение бисглицинат железа включено в перечень допустимых соединений железа для использования в качестве биологически активной добавки к пище на территории РФ¹⁰ и на территории Евросоюза^{16,17}, при этом возможность приема бисглицината железа во время еды может способствовать уменьшению риска получения негативного опыта в виде металлического привкуса во рту и нежелательных явлений со стороны ЖКТ [312]. Необходимо отметить также высокую биодоступность бисглицината, которая по данным исследований примерно в 3 раза превышает биодоступность сульфата, что позволяет в меньших дозах достигать сопоставимой эффективности и лучшей переносимости.

Алгоритм профилактической стратегии у пациентов с факторами риска развития ДЖ (таблица 13.1) представлен на рисунке 13.1.

Важным аспектом профилактики ЖДА является регулярное диспансерное наблюдение и про-

ведение скрининговых обследований при обращении пациентов в медицинские учреждения, в ходе диспансеризации и медицинских осмотров. Скрининг подразумевает выполнение ОАК, оценку СФ, трансферрина, ОЖСС и расчет НТЖ. Дети без факторов риска обследуются ежегодно в возрасте 2-5 лет, а женщины репродуктивного возраста без факторов риска — каждые 5-10 лет, при наличии факторов риска — ежегодно².

Раздел 14. Организация оказания медицинской помощи пациентам с железодефицитной анемией

14.1. Критерии оценки качества оказания медицинской помощи

Критерии качества применяются в целях оценки своевременности оказания медицинской помощи, правильности выбора методов профилактики, диагностики, лечения и реабилитации, степени достижения запланированного результата¹⁹. При оказании медицинской помощи пациенту с ЖДА врачу следует ориентироваться на критерии, описанные в таблице 14.1.

Литература/References

- Diagnosis and treatment of iron deficiency anemia in children: A manual for doctors. Edited by akad. RAS Prof. Rumyantseva A.G. and Prof. Zakharova I.N. KONTI PRINT LLC, 2015. 76 р. (In Russ.) Диагностика и лечение железодефицитной анемии у детей: Пособие для врачей. Под ред. акад. РАН проф. Румянцева А.Г. и проф. Захаровой И.Н. ООО "КОНТИ ПРИНТ", 2015. 76 с.
- Healthcare in Russia. Moscow: Rosstat; 2023. 180 р. (In Russ.) Здравоохранение в России. М.: Росстат; 2023. 180 с.
- Dikke GB, Stuklov NI. Algorithms for the diagnosis and treatment of iron deficiency anemia and latent iron deficiency in women of reproductive age. The consensus of an obstetrician-gynecologist and a hematologist. Obstetrics and gynecology. 2020;9:22-6. (In Russ.) Дикке Г.Б., СТУКЛОВ Н.И. АЛГОРИТМЫ ДИАГНОСТИКИ И ЛЕ-
- чения железодефицитной анемии и латентного дефицита железа у женщин репродуктивного возраста. Консенсус акушера-гинеколога и гематолога. Акушерство и гинекология. 2020;9:22-6.
- Kotova EG, Kobyakova OS, Starodubov VI, et al. Morbidity of the entire Russian population in 2020: statistical materials. Central Research Institute of the Ministry of Health of Russia; 2021. 146 р. (In Russ.) Котова Е.Г., Кобякова О.С., Стародубов В.И. и др. Заболеваемость всего населения России в 2020 году: статистические материалы. ЦНИИОИЗ Минздрава России; 2021. 146 с. ISBN: 978-5-94116-039-6, EDN: VMTKHO.
- Volkova SA, Mayansky NA, Borovkov NN, et al. Hemogram indicators in the adult working population. Hematology and transfusiology. 2008;53(1):21-7. (In Russ.)

Директива 2002/46/ЕС Европейского Парламента и Совета от 10 июня 2002 г. о сближении законодательства государств-членов в отношении пищевых добавок. ОЈ L 183, 12.7.2002, стр. 51-57. https://base.garant. ru/70390776/.

Регламент (ЕС) № 1925/2006 Европейского Парламента и Совета от 20 декабря 2006 года о добавлении витаминов, минералов и некоторых других веществ в пищевые продукты. ОЈ L 404, 30.12.2006, стр. 26-38. https://fsvps. gov.ru/files/reglament-eu-1925-2006-evropejskogo-parlame/.

Приказ Минздрава России от 14.04.2025 № 203н "Об утверждении критериев оценки качества медицинской помощи" http://publication.pravo.gov. ru/document/0001202505290045 (дата обращения 07.07.2025).

- Волкова С.А., Маянский Н.А., Боровков Н.Н. и др. Показатели гемограммы у взрослого работающего населения. Гематология и трансфузиология. 2008; 53(1):21-7.
- Drapkina OM, Martynov AI, Baida AP, et al. Resolution of the expert council "Relevant issues of iron deficiency in the Russian Federation". Cardiovascular Therapy and Prevention. 2020;19(5):2700. (In Russ.) Драпкина О. М., Мартынов А. И., Байда А. П. и др. Резолюция экспертного совета "Актуальные вопросы железодефицита в Российской Федерации". Кардиоваскулярная терапия и профилактика. 2020;19(5):2700. doi:10.15829/1728-8800-2020-2700.
- Rukavitsyn OA. A short guide for practitioners of all specialties. GEOTAR-Media; 2021.
 352 р. (In Russ.) Рукавицын О.А. Краткое руководство для практических врачей всех специальностей. ГЭОТАР-Медиа; 2021. 352 с. ISBN: 978-5-9704-8188-2.
- Mansour D, Hofmann A, Gemzell-Danielsson K. A Review of Clinical Guidelines on the Management of Iron Deficiency and Iron-Deficiency Anemia in Women with Heavy Menstrual Bleeding. Adv Ther. 2021;38(1):201-25. doi:10.1007/s12325-020-01564-v.
- Batchelor EK, Kapitsinou P, Pergola PE, et al. Iron Deficiency in Chronic Kidney Disease: Updates on Pathophysiology, Diagnosis, and Treatment. JASN. 2020;31(3): 456-68. doi:10.1681/ASN.2019020213.
- De Franceschi L, Iolascon A, Taher A, Cappellini MD. Clinical management of iron deficiency anemia in adults: Systemic review on advances in diagnosis and treatment. European Journal of Internal Medicine. 2017;42:16-23. doi:10.1016/j.ejim.2017.04.018.
- Camaschella C. Iron deficiency. Blood. 2019;133(1):30-9. doi:10.1182/blood-2018-05-815944.
- Cappellini MD, Musallam KM, Taher AT. Iron deficiency anaemia revisited. J Intern Med. 2020;287(2):153-70. doi:10.1111/joim.13004.
- Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. The Lancet. 2016;387(10021):907-16. doi:10.1016/S0140-6736(15)60865-0.
- Mirza FG, Abdul-Kadir R, Breymann C, Fraser IS, Taher A. Impact and management of iron deficiency and iron deficiency anemia in women's health. Expert Review of Hematology. 2018;11(9):727-36. doi:10.1080/17474086.2018.1502081.
- Cotter J, Baldaia C, Ferreira M, et al. Diagnosis and treatment of iron-deficiency anemia in gastrointestinal bleeding: A systematic review. WJG. 2020;26(45):7242-57. doi:10.3748/wjg.v26.i45.7242.
- Breymann C, Honegger C, Hösli I, Surbek D. Diagnosis and treatment of irondeficiency anaemia in pregnancy and postpartum. Arch Gynecol Obstet. 2017;296(6): 1229-34. doi:10.1007/s00404-017-4526-2.
- Peyrin-Biroulet L, Williet N, Cacoub P. Guidelines on the diagnosis and treatment of iron deficiency across indications: a systematic review. The American Journal of Clinical Nutrition. 2015;102(6):1585-94. doi:10.3945/ajcn.114.103366.
- Numan S, Kaluza K. Systematic review of guidelines for the diagnosis and treatment of iron deficiency anemia using intravenous iron across multiple indications. Current Medical Research and Opinion. 2020;36(11):1769-82. doi:10.1080/03007995. 2020.1824898.
- Alekseeva OP. Modern principles of diagnosis and treatment of iron deficiency anemia and iron deficiency in gastroenterological diseases: a review of current clinical recommendations. Remedium. 2021;(2):70-6. (In Russ.) Алексеева О.П. Современные принципы диагностики и лечения железодефицитной анемии и дефицита железа при заболеваниях гастроэнтерологического профиля: обзор современных клинических рекомендаций. Ремедиум. 2021;(2):70-6. doi:10.21518/1561-5936-2021-2-70-76.
- Bakulin IG, Oganezova IA, Bakulina NV. Outpatient gastroenterology: a guide for doctors. 2020. 300 р. (In Russ.) Бакулин И.Г., Оганезова И.А., Бакулина Н.В. Амбулаторная гастроэнтерология: руководство для врачей. 2020. 300 с. ISBN: 978-5-6047195-6-5.
- Aisen P. Chemistry and biology of eukaryotic iron metabolism. The International Journal of Biochemistry & Cell Biology. 2001;33(10):940-959. doi:10.1016/S1357-2725(01)00063-2.
- 22. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164-74.
- Puig S, Ramos-Alonso L, Romero AM, Martínez-Pastor MT. The elemental role of iron in DNA synthesis and repair. Metallomics. 2017;9(11):1483-500. doi:10.1039/ C7MT00116A.
- Rockfield S, Chhabra R, Robertson M, et al. Links Between Iron and Lipids: Implications in Some Major Human Diseases. Pharmaceuticals. 2018;11(4):113. doi:10. 3390/ph11040113.
- Mole DR. Iron Homeostasis and Its Interaction with Prolyl Hydroxylases. Antioxidants & Redox Signaling. 2010;12(4):445-58. doi:10.1089/ars.2009.2790.
- Ramsay AJ, Hooper JD, Folgueras AR, et al. Matriptase-2 (TMPRSS6): a proteolytic regulator of iron homeostasis. Haematologica. 2009;94(6):840-9. doi:10.3324/ haematol.2008.001867.
- Istiqomah N, Umarghanies SS, Farmawati A, et al. Polimorfisme gen ferroportin (FPN1) -1355 G/C sebagai faktor risiko anemia defisiensi besi pada ibu hamil. Jurnal Gizi Klinik Indonesia. 2013;9(4):162. doi:10.22146/ijcn.18364.
- 28. Azman NA, Zulkafli Z, Bakar NS, Assyuhada MGSN, Mohammad SNNA. Association of single nucleotide polymorphism at BMP2 gene with iron deficiency status among

- anaemic patients in Hospital Universiti Sains Malaysia. Egypt J Med Hum Genet. 2024;25(1):46. doi:10.1186/s43042-024-00511-8.
- Bakirova AE, Partsernyak AS, Kudlay DA, et al. Molecular and genetic features of iron deficiency anemia phenotypes. Molecular medicine. 2025;23(3):56-61. (In Russ.) Бакирова А.Э., Парцерняк А.С., Кудлай Д.А. и др. Молекулярно-генетические особенности фенотипов железодефицитной анемии. Молекулярная медицина. 2025:23(3):56-61.
- Finberg KE, Heeney MM, Campagna DR, et al. Mutations in TMPRSS6 cause ironrefractory iron deficiency anemia (IRIDA). Nat Genet. 2008;40(5):569-571. doi:10. 1038/ng.130.
- Milet J, Le Gac G, Scotet V, et al. A common SNP near BMP2 is associated with severity of the iron burden in HFE p.C282Y homozygous patients: A followup study. Blood Cells, Molecules, and Diseases. 2010;44(1):34-7. doi:10.1016/j. bcmd.2009.10.001.
- Bösch ES, Spörri J, Scherr J. Genetic Variants Affecting Iron Metabolism in Healthy Adults: A Systematic Review to Support Personalized Nutrition Strategies. Nutrients. 2024;16(22):3793. doi:10.3390/nu16223793.
- Nalado AM, Dickens C, Dix-Peek T, et al. TMPRSS6 rs855791 polymorphism and susceptibility to iron deficiency anaemia in non-dialysis chronic kidney disease patients in South Africa. Int J Mol Epidemiol Genet. 2019;10(1):1-9.
- Al-Amer O, Hawasawi Y, Oyouni AAA, et al. Study the association of transmembrane serine protease 6 gene polymorphisms with iron deficiency status in Saudi Arabia. Gene. 2020;751:144767. doi:10.1016/j.gene.2020.144767.
- Elmahdy M, Elhakeem H, Gaber F, Mourad F. TMPRSS6 Gene Polymorphism and Serum Hepcidin in Iron Deficiency Anemia. The Egyptian Journal of Hospital Medicine. 2018;73(7):7090-103. doi:10.21608/ejhm.2018.17507.
- Pellegrino RM, Coutinho M, D'Ascola D, et al. Two novel mutations in the tmprss6 gene associated with iron-refractory iron-deficiency anaemia (irida) and partial expression in the heterozygous form. Br J Haematol. 2012;158(5):668-72. doi:10.1111/i.1365-2141.2012.09198.x.
- 37. Kodentsova VM. Vitamins. (2nd ed., revised, ed.). Moscow: Publishing House Medical Information Agency, LLC; 2023. 528 р. (In Russ.) Коденцова В.М. Витамины. (2-е изд. перераб., ред.). М: ООО "Издательство "Медицинское информационное агентство"; 2023. 528 с. ISBN: 978-5-9986-0517-8.
- Bermejo F, García-López S. A guide to diagnosis of iron deficiency and iron deficiency anemia in digestive diseases. WJG. 2009;15(37):4638. doi:10.3748/wjg.15.4638.
- Means RJ, Krantz S. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood. 1992;80(7):1639-47. doi:10.1182/blood.V80.7.1639. bloodjournal8071639.
- Idelson LI, Vorobyev PA. Handbook of Hematology. Volume 3. M: Newdiamed;
 2005. 416 р. (In Russ.) Идельсон Л.И., Воробьев П.А. Руководство по гематологии. Том 3. М: Ньюдиамед; 2005. 416 с. ISBN: 5-88107-054-2.
- Lukina EA, Dezhenkova AV. Iron metabolism in normal and pathological conditions.
 Clinical oncohematology. 2015;8(4):355-61. (In Russ.) Лукина Е.А., Деженкова А.В.
 Метаболизм железа в норме и при патологии. Клиническая онкогематология.
 2015;8(4):355-61
- 42. Ems T, Lucia K, Huecker MR. Biochemistry, Iron Absorption. StatPearls Publishing; 2021.
- Camaschella C. New insights into iron deficiency and iron deficiency anemia. Blood Reviews. 2017;31(4):225-33. doi:10.1016/j.blre.2017.02.004.
- Wallace DF. The Regulation of Iron Absorption and Homeostasis. Clin Biochem Rev. 2016;37(2):51-62.
- Guo S, Huang J, Jiang H, et al. Restless Legs Syndrome: From Pathophysiology to Clinical Diagnosis and Management. Front Aging Neurosci. 2017;9:171. doi:10.3389/ fnagi.2017.00171.
- Hoes MF, Grote Beverborg N, Kijlstra JD, et al. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. European J of Heart Fail. 2018;20(5):910-9. doi:10.1002/ejhf.1154.
- Martens P, Dupont M, Mullens W. Cardiac iron deficiency how to refuel the engine out of fuel. European J of Heart Fail. 2018;20(5):920-2. doi:10.1002/ejhf.1174.
- Vorobyov Al. Rational pharmacotherapy of diseases of the blood system. Moscow: Litterra, 2009. 688 р. (In Russ.) Воробьев А.И. Рациональная фармакотерапия заболеваний системы крови. М.: Литтерра, 2009. 688 с. ISBN: 978-5-904090-05-0.
- Wander K, Shell-Duncan B, McDade TW. Evaluation of iron deficiency as a nutritional adaptation to infectious disease: An evolutionary medicine perspective. American J Hum Biol. 2009;21(2):172-9. doi:10.1002/ajhb.20839.
- Soppi E.Iron Deficiency Without Anemia Common, Important, Neglected. Clin Case Rep Rev. 2019;5(2). doi:10.15761/CCRR.1000456.
- Lugovskaya SA, Pochtar ME, Dolgov VV. Hematological analyzers. Interpretation of the blood test. Moscow: OOO "Publishing House Triada", 2007. 112 р. (In Russ.) Луговская С.А., Почтарь М.Е., Долгов В.В. Гематологические анализаторы. Интерпретация анализа крови. М.: ООО "Издательство Триада", 2007. 112 с. ISBN: 978-5-04789-274-5
- Dolgov VV, Lugovskaya SA, Morozova VT, Pochtar ME. Laboratory diagnostics of anemia. 2nd ed., supplement M.: Tver: Triad, 2009. 148 p. (In Russ.) Долгов В.В., Луговская С.А., Морозова В.Т., Почтарь М.Е. Лабораторная диагностика анемий. 2-е изд., доп. М.: Тверь: Триада, 2009. 148 с. ISBN: 978-5-94789-340-3.

- Dolgov VV, Lugovskaya SA, Pochtar ME, Fedorova MM. Laboratory diagnostics of iron metabolism disorders (textbook). Triad; 2014. 72 р. (In Russ.) Долгов В.В., Луговская С.А., Почтарь М.Е., Федорова М.М. Лабораторная диагностика нарушений обмена железа (учебное пособие). Триада; 2014. 72 с. ISBN: 978-5-94789-671-3
- Auerbach M, Adamson JW. How we diagnose and treat iron deficiency anemia.
 Am J Hematol. 2016;91(1):31-8. doi:10.1002/ajh.24201.
- Thumbe A, Quraishi MN, Dabhi K, et al. PTU-060 Iron deficiency anaemia in plain sight at the front door in the midlands. In: Posters. BMJ Publishing Group Ltd and British Society of Gastroenterology; 2019:A147.1-A147. doi:10.1136/gutjnl-2019-BSGAbstracts.276.
- Dvoretsky LI. Anemia: strategy and tactics of diagnostic search. Polyclinic doctor's Handbook. 2002;(6):5-10. (In Russ.) Дворецкий Л. И. Анемии: стратегия и тактика диагностического поиска. Справочник поликлинического врача. 2002;(6):5-10.
- ASGE Standards of Practice Committee, Gurudu SR, Bruining DH, et al. The role of endoscopy in the management of suspected small-bowel bleeding. Gastrointest Endosc. 2017;85(1):22-31. doi:10.1016/j.gie.2016.06.013.
- Pennazio M, Eisen G, Goldfarb N. ICCE Consensus for Obscure Gastrointestinal Bleeding. Endoscopy. 2005;37(10):1046-50. doi:10.1055/s-2005-870319.
- Snook J, Bhala N, Beales ILP, et al. British Society of Gastroenterology guidelines for the management of iron deficiency anaemia in adults. Gut. 2021;70(11):2030-51. doi:10.1136/gutinl-2021-325210.
- 60. Tarasova IS, Chernov VM, Lavrukhin DB, Rumyantsev AG. Assessment of sensitivity and specificity of symptoms of anemia and sideropenia. Hematology and transfusiology. 2011;56(5):6-13. (In Russ.) Тарасова И.С., Чернов В.М., Лаврухин Д.Б., Румянцев А.Г. Оценка чувствительности и специфичности симптомов анемии и сидеропении. Гематология и трансфузиология. 2011;56(5):6-13.
- Enns RA, Hookey L, Armstrong D, et al. Clinical Practice Guidelines for the Use of Video Capsule Endoscopy. Gastroenterology. 2017;152(3):497-514. doi:10.1053/j. gastro.2016.12.032.
- Goddard AF, James MW, McIntyre AS, Scott BB, on behalf of the British Society of Gastroenterology. Guidelines for the management of iron deficiency anaemia. Gut. 2011;60(10):1309-16. doi:10.1136/gut.2010.228874.
- Nayagam J, Ha S, Barreto L, Zang A, Curtis H. PTU-120 Iron deficiency anaemia in renal cell carcinoma. In: Gastroenterology Service. BMJ Publishing Group Ltd and British Society of Gastroenterology; 2018:A250.2-A252. doi:10.1136/gutjnl-2018-BSGAbstracts.498.
- ASGE Standards of Practice Committee, Fisher L, Lee Krinsky M, et al. The role of endoscopy in the management of obscure GI bleeding. Gastrointest Endosc. 2010;72(3):471-9. doi:10.1016/j.gie.2010.04.032.
- Pasricha SR, Tye-Din J, Muckenthaler MU, Swinkels DW. Iron deficiency. Lancet. 2021;397(10270):233-48. doi:10.1016/S0140-6736(20)32594-0.
- Pennazio M, Spada C, Eliakim R, et al. Small-bowel capsule endoscopy and deviceassisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy. 2015;47(4):352-76. doi:10.1055/s-0034-1391855.
- Wolthuis AM, Meuleman C, Tomassetti C, et al. Bowel endometriosis: colorectal surgeon's perspective in a multidisciplinary surgical team. World J Gastroenterol. 2014;20(42):15616-23. doi:10.3748/wjg.v20.i42.15616.
- 68. Ivashkin VT, Mayev IV, Kaprin AD, et al. Early detection of oncological diseases of the digestive system (methodological guidelines of the Russian Gastroenterological Association and the Association of Oncologists of Russia for primary care physicians). Russian Journal of Gastroenterology, Hepatology, and Coloproctology. 2019;29(5):53-74. (In Russ.) Ивашкин В.Т., Маев И.В., Каприн А.Д. и др. Раннее выявление онкологических заболеваний органов пищеварения (методическое руководство Российской гастроэнтерологической ассоциации и Ассоциации онкологов России для врачей первичного звена здравоохранения). Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019;29(5):53-74. doi:10.22416/1382-4376-2019-29-5-53-74.
- 69. Ivanova EV, Fedorov ED, Tikhomirova EV, et al. Colonoscopy using a video capsule: possibilities of noninvasive diagnosis of colon diseases. Research and practice in medicine. 2017;4(1):13-22. (In Russ.) Иванова Е.В., Федоров Е.Д., Тихомирова Е.В. и др. Колоноскопия с помощью видеокапсулы: возможности неинвазивной диагностики заболеваний толстой кишки. Исследования и практика в медицине. 2017;4(1):13-22. doi:10.17709/2409-2231-2017-4-1-2.
- Spada C, McNamara D, Despott EJ, et al. Performance measures for small-bowel endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative. Endoscopy. 2019;51(06):574-98. doi:10.1055/a-0889-9586.
- 2021 exceptional surveillance of suspected cancer: recognition and referral (NICE guideline NG12) and suspected neurological conditions: recognition and referral (NICE guideline NG127) [Internet]. London: National Institute for Health and Care Excellence (NICE); 2021. ISBN-13: 978-1-4731-4277-0.
- Kothari S, Afshar Y, Friedman LS, Ahn J. AGA Clinical Practice Update on Pregnancy-Related Gastrointestinal and Liver Disease: Expert Review. Gastroenterology. 2024;167(5):1033-45. doi:10.1053/j.gastro.2024.06.014.

- Shergill AK, Ben-Menachem T, Chandrasekhara V, et al. Guidelines for endoscopy in pregnant and lactating women. Gastrointestinal Endoscopy. 2012;76(1):18-24. doi:10.1016/j.gie.2012.02.029.
- Tran TT, Ahn J, Reau NS. ACG Clinical Guideline: Liver Disease and Pregnancy. American Journal of Gastroenterology. 2016;111(2):176-94. doi:10.1038/ajg.2015.430.
- Savas N. Gastrointestinal endoscopy in pregnancy. WJG. 2014;20(41):15241. doi:10. 3748/wjg.v20.i41.15241.
- Koffas A, Laskaratos FM, Epstein O. Non-small bowel lesion detection at small bowel capsule endoscopy: A comprehensive literature review. World J Clin Cases. 2018;6(15):901-7. doi:10.12998/wicc.v6.i15.901.
- Weng TC, Chang CH, Dong YH, et al. Anaemia and related nutrient deficiencies after Roux-en-Y gastric bypass surgery: a systematic review and meta-analysis. BMJ Open. 2015;5(7):e006964. doi:10.1136/bmjopen-2014-006964.
- Malfertheiner P, Megraud F, Rokkas T, et al. Management of Helicobacter pylori infection: the Maastricht VI/Florence consensus report. Gut. 2022;71(9):1724-62. doi:10.1136/gutjnl-2022-327745.
- Tanous O, Levin C, Suchdev PS, et al. Resolution of iron deficiency following successful eradication of Helicobacter pylori in children. Acta Paediatrica. 2022;111(5):1075-82. doi:10.1111/apa.16255.
- Annibale B, Marignani M, Monarca B, et al. Reversal of Iron Deficiency Anemia after Helicobacter pylori Eradication in Patients with Asymptomatic Gastritis. Ann Intern Med. 1999;131(9):668-72. doi:10.7326/0003-4819-131-9-199911020-00006.
- Wenzhen Y, Yumin L, Kehu Y, et al. Iron deficiency anemia in Helicobacter pylori infection: meta-analysis of randomized controlled trials. Scandinavian Journal of Gastroenterology. 2010;45(6):665-76. doi:10.3109/00365521003663670.
- Miernyk K, Bruden D, Zanis C, et al. The Effect of Helicobacter pylori Infection on Iron Stores and Iron Deficiency in Urban Alaska Native Adults. Helicobacter. 2013;18(3):222-8. doi:10.1111/hel.12036.
- Rockey DC, Altayar O, Falck-Ytter Y, Kalmaz D. AGA Technical Review on Gastrointestinal Evaluation of Iron Deficiency Anemia. Gastroenterology. 2020;159(3):1097-19. doi:10.1053/j.qastro.2020.06.045.
- Lazebnik LB, Tkachenko EI, Oreshko LS, et al. Recommendations for the diagnosis and treatment of adult celiac disease. Experimental and clinical gastroenterology. 2015;5(117):3-12. (In Russ.) Лазебник Л.Б., Ткаченко Е.И., Орешко Л.С. и др. Рекомендации по диагностике и лечению целиакии взрослых. Экспериментальная и клиническая гастроэнтерология. 2015;5(117):3-12.
- He B, Yang J, Xiao J, et al. Accuracy of Computed Tomographic Enterography for Obscure Gastrointestinal Bleeding: A Diagnostic Meta-analysis. Acad Radiol. 2018;25(2):196-201. doi:10.1016/j.acra.2017.09.001.
- Gunjan D, Sharma V, Rana SS, Bhasin DK. Small bowel bleeding: a comprehensive review. Gastroenterol Rep (Oxf). 2014;2(4):262-75. doi:10.1093/gastro/gou025.
- Zhang BL, Jiang LL, Chen CX, Zhong BS, Li YM. Diagnosis of obscure gastrointestinal hemorrhage with capsule endoscopy in combination with multiple-detector computed tomography. J Gastroenterol Hepatol. 2010;25(1):75-9. doi:10.1111/ j.1440-1746.2009.06016.x.
- Huprich JE, Fletcher JG, Fidler JL, et al. Prospective blinded comparison of wireless capsule endoscopy and multiphase CT enterography in obscure gastrointestinal bleeding. Radiology. 2011;260(3):744-51. doi:10.1148/radiol.11110143.
- Ivanova EV, Fedorov ED. Capsule and balloon-assisted enteroscopy in the diagnosis and treatment of diseases of the small intestine. Methodical manual.; 2014. 50 р. (In Russ.) Иванова Е.В., Федоров Е.Д. Капсульная и баллонно-ассистированная энтероскопия в диагностике и лечении заболеваний тонкой кишки. Методическое пособие.; 2014. 50 с.
- Rossi RE, Zullo A, Ferretti S, et al. Diagnostic Yield of Small Bowel Videocapsule Endoscopy in Patients with Iron Deficiency Anemia. A Systematic Review and metaanalysis. Journal of Clinical Gastroenterology. 2024;58(10):998-1002. doi:10.1097/ MCG.0000000000001968.
- Koulaouzidis A, Rondonotti E, Giannakou A, Plevris JN. Diagnostic yield of smallbowel capsule endoscopy in patients with iron-deficiency anemia: a systematic review. Gastrointestinal Endoscopy. 2012;76(5):983-92. doi:10.1016/j.gie.2012. 07.035.
- Muhammad A. Role of small bowel capsule endoscopy in the diagnosis and management of iron deficiency anemia in elderly: A comprehensive review of the current literature. WJG. 2014;20(26):8416. doi:10.3748/wjg.v20.i26.8416.
- 93. Ivanova EV, Fedorov ED, Yudin OI, et al. Diagnosis and treatment of intraluminal gastrointestinal bleeding with an unidentified source. Sechenovsky Bulletin. 2018;1(31):40-7. (In Russ.) Иванова Е.В., Федоров Е.Д., Юдин О.И. и др. Диагностика и лечение внутрипросветных желудочно-кишечных кровотечений с неустановленным источником. Сеченовский вестник. 2018;1(31):40-7.
- 94. Tikhomirova EV, Ivanova EV, Budykina AV, et al. Clinical results of diagnosis and treatment of small intestine bleeding. Endoscopic surgery. 2023;(5):5-14. (In Russ.) Тихомирова Е.В., Иванова Е.В., Будыкина А.В. и др. Клинические результаты диагностики и лечения тонкокишечных кровотечений. Эндоскопическая хирургия. 2023;(5):5-14.
- Robertson AR, Yung DE, Douglas S, Plevris JN, Koulaouzidis A. Repeat capsule endoscopy in suspected gastrointestinal bleeding. Scandinavian Journal of Gastroenterology. 2019;54(5):656-61. doi:10.1080/00365521.2019.1606932.

- Milman N.Prepartum anaemia: prevention and treatment. Ann Hematol. 2008; 87(12):949-59. doi:10.1007/s00277-008-0518-4.
- Achebe MM, Gafter-Gvili A. How I treat anemia in pregnancy: iron, cobalamin, and folate. Blood. 2017;129(8):940-9. doi:10.1182/blood-2016-08-672246.
- Bener A, Kamal M, Bener H, Bhugra D. Higher prevalence of iron deficiency as strong predictor of attention deficit hyperactivity disorder in children. Ann Med Health Sci Res. 2014;4(Suppl 3):S291-7. doi:10.4103/2141-9248.141974.
- Lozoff B, Jimenez E, Smith JB. Double burden of iron deficiency in infancy and low socioeconomic status: a longitudinal analysis of cognitive test scores to age 19 years. Arch Pediatr Adolesc Med. 2006;160(11):1108-13. doi:10.1001/archpedi.160.11.1108.
- 100. McCann S, Perapoch Amadó M, Moore SE. The Role of Iron in Brain Development: A Systematic Review. Nutrients. 2020;12(7):2001. doi:10.3390/nu12072001.
- Radlowski EC, Johnson RW. Perinatal iron deficiency and neurocognitive development. Front Hum Neurosci. 2013;7. doi:10.3389/fnhum.2013.00585.
- Slomian J, Honvo G, Emonts P, Reginster JY, Bruyère O. Consequences of maternal postpartum depression: A systematic review of maternal and infant outcomes. Womens Health (Lond Engl). 2019:15:1745506519844044. doi:10.1177/1745506519844044.
- 103. Xu F, Roberts L, Binns C, Sullivan E, Homer CSE. Anaemia and depression before and after birth: a cohort study based on linked population data. BMC Psychiatry. 2018;18(1):224. doi:10.1186/s12888-018-1796-6.
- 104. Reveiz L, Gyte GM, Cuervo LG, Casasbuenas A. Treatments for iron-deficiency anaemia in pregnancy. Cochrane Database Syst Rev. 2011;(10):CD003094. doi:10. 1002/14651858.CD003094.pub3.
- 105. Muñoz M, Peña-Rosas JP, Robinson S, et al. Patient blood management in obstetrics: management of anaemia and haematinic deficiencies in pregnancy and in the postpartum period: NATA consensus statement. Transfusion Medicine. 2018;28(1):22-39. doi:10.1111/tme.12443.
- 106. Pavord S, Daru J, Prasannan N, et al. UK guidelines on the management of iron deficiency in pregnancy. Br J Haematol. 2020;188(6):819-30. doi:10.1111/bjh.16221.
- Brown JC, Harhay MO, Harhay MN. The Prognostic Importance of Frailty in Cancer Survivors. J American Geriatrics Society. 2015;63(12):2538-43. doi:10.1111/jos.13819.
- 108. Röhrig G, Gütgemann I, Leischker A, Kolb G. Anämie im Alter ein geriatrisches Syndrom?: Zweites Positionspapier zur Anämie im Alter der AG Anämie der Deutschen Gesellschaft für Geriatrie. Z Gerontol Geriat. 2018;51(8):921-23. doi:10.1007/s00391-018-1457-x.
- 109. Katsumi A, Abe A, Tamura S, Matsushita T. Anemia in older adults as a geriatric syndrome: A review. Geriatrics Gerontology Int. 2021;21(7):549-54. doi:10.1111/ggi.14183.
- 110. QuickStats: Prevalence of Anemia Among Adults Aged ≥65 Years, by Sex and Age Group National Health and Nutrition Examination Survey, 2013–2016. MMWR Morb Mortal Wkly Rep. 2018;67(42):1198. doi:10.15585/mmwr.mm6742a8.
- Chueh HW, Jung HL, Shim YJ, Choi HS, Han JY. High anemia prevalence in Korean older adults, an advent healthcare problem: 2007–2016 KNHANES. BMC Geriatr. 2020;20(1):509. doi:10.1186/s12877-020-01918-9.
- Eisenstaedt R, Penninx BWJH, Woodman RC. Anemia in the elderly: Current understanding and emerging concepts. Blood Reviews. 2006;20(4):213-26. doi:10.1016/ j.blre.2005.12.002.
- 113. Beghé C, Wilson A, Ershler WB. Prevalence and outcomes of anemia in geriatrics: a systematic review of the literature. The American Journal of Medicine. 2004;116(7):3-10. doi:10.1016/j.amjmed.2003.12.009.
- 114. Bach V, Schruckmayer G, Sam I, et al. Prevalence and possible causes of anemia in the elderly: a cross-sectional analysis of a large European university hospital cohort. Clin Interv Aging. 2014;9:1187-96. doi:10.2147/CIA.S61125.
- Jia W, Wang S, Liu M, et al. Anemia in centenarians: prevalence and association with kidney function. Hematology. 2020;25(1):26-33. doi:10.1080/16078454.2019.1703448.
- 116. Khovasova NO, Vorobyova NM, Tkacheva ON, et al. The prevalence of anemia and its associations with other geriatric syndromes in people over 65 years of age: data from the Russian epidemiological study EUCALYPTUS. Therapeutic Archive. 2022;94(1):24-31. (In Russ.) Ховасова Н.О., Воробьева Н.М., Ткачева О.Н. и др. Распространенность анемии и ее ассоциации с другими гериатрическими синдромами у лиц старше 65 лет: данные российского эпидемиологического исследования ЭВКАЛИПТ. Терапевтический архив. 2022;94(1):24-31. doi:10.26442/00403660.2022.01.201316.
- 117. Pires Corona L, Drumond Andrade FC, De Oliveira Duarte YA, Lebrao ML. The relationship between anemia, hemoglobin concentration and frailty in Brazilian older adults. The Journal of nutrition, health and aging. 2015;19(9):935-40. doi:10.1007/s12603-015-0502-3.
- 118. Ariza-Solé A, Lorente V, Formiga F, et al. Prognostic impact of anemia according to frailty status in elderly patients with acute coronary syndromes. Journal of Cardiovascular Medicine. 2020;21(1):27-33. doi:10.2459/JCM.0000000000000884.
- 119. Kim EY, Son YJ. Association between Anemia and Cognitive Impairment among Elderly Patients with Heart Failure. IJERPH. 2019;16(16):2933. doi:10.3390/ijerph16162933.
- Hong CH, Falvey C, Harris TB, et al. Anemia and risk of dementia in older adults: Findings from the Health ABC study. Neurology. 2013;81(6):528-33. doi:10.1212/ WNL.0b013e31829e701d.
- Hidese S, Saito K, Asano S, Kunugi H. Association between iron-deficiency anemia and depression: A web-based Japanese investigation. Psychiatry Clin Neurosci. 2018;72(7):513-521. doi:10.1111/pcn.12656.

- Wangping J, Ke H, Shengshu W, et al. Associations Between Anemia, Cognitive Impairment, and All-Cause Mortality in Oldest-Old Adults: A Prospective Population-Based Cohort Study. Front Med. 2021;8:613426. doi:10.3389/fmed.2021.613426.
- 123. Santos PHS, Carmo ÉA, Carneiro JAO, et al. Handgrip strength: An effective screening instrument for anemia in the elderly women. Public Health Nursing. 2019;36(2):178-83. doi:10.1111/phn.12579.
- 124. Wouters HJCM, Van Der Klauw MM, De Witte T, et al. Association of anemia with health-related quality of life and survival: a large population-based cohort study. Haematologica. 2019;104(3):468-76. doi:10.3324/haematol.2018.195552.
- 125. Zilinski J, Zillmann R, Becker I, et al. Prevalence of anemia among elderly inpatients and its association with multidimensional loss of function. Ann Hematol. 2014;93(10):1645-54. doi:10.1007/s00277-014-2110-4.
- Marzban M, Nabipour I, Farhadi A, et al. Association between anemia, physical performance and cognitive function in Iranian elderly people: evidence from Bushehr Elderly Health (BEH) program. BMC Geriatr. 2021;21(1):329. doi:10.1186/s12877-021-02285-9
- 127. Khovasova NO, Naumov AV, Tkacheva ON. The effect of anemia on the geriatric status of an elderly person. Clinical gerontology. 2021;27(3-4):15-24. (In Russ.) Ховасова Н.О., Наумов А.В., Ткачева О.Н. Влияние анемии на гериатрический статус пожилого человека. Клиническая геронтология. 2021;27(3-4):15-24. doi:10. 26347/1607-2499202103-04015-024
- 128. Yoshimura Y, Wakabayashi H, Nagano F, et al. Low Hemoglobin Levels are Associated with Sarcopenia, Dysphagia, and Adverse Rehabilitation Outcomes After Stroke. Journal of Stroke and Cerebrovascular Diseases. 2020;29(12):105405. doi:10.1016/j.jstrokecerebrovasdis.2020.105405.
- Bani Hassan E, Vogrin S, Hernandez Viña I, et al. Hemoglobin Levels are Low in Sarcopenic and Osteosarcopenic Older Persons. Calcif Tissue Int. 2020;107(2):135-42. doi:10.1007/s00223-020-00706-2.
- Penninx BWJH, Pluijm SMF, Lips P, et al. Late-Life Anemia Is Associated with Increased Risk of Recurrent Falls. J American Geriatrics Society. 2005;53(12):2106-11. doi:10.1111/j.1532-5415.2005.00491.x.
- Teng Y, Teng Z, Xu S, et al. The Analysis for Anemia Increasing Fracture Risk. Med Sci Monit. 2020;26. doi:10.12659/MSM.925707.
- 132. Valderrábano RJ, Lee J, Lui LY, et al. Older Men With Anemia Have Increased Fracture Risk Independent of Bone Mineral Density. The Journal of Clinical Endocrinology & Metabolism. 2017;102(7):2199-206. doi:10.1210/jc.2017-00266.
- Golba A, Soral T, Mlynarska A, et al. [Kinesiophobia in patients with cardiovascular disease]. Wiad Lek. 2018;71(9):1653-60.
- 134. Lee CT, Chen MZ, Yip CYC, et al. Prevalence of Anemia and Its Association with Frailty, Physical Function and Cognition in Community-Dwelling Older Adults: Findings from the HOPE Study. The Journal of nutrition, health and aging. 2021;25(5):679-87. doi:10.1007/s12603-021-1625-3.
- 135. Crawford J, Cella D, Cleeland CS, et al. Relationship between changes in hemoglobin level and quality of life during chemotherapy in anemic cancer patients receiving epoetin alfa therapy. Cancer. 2002;95(4):888-95. doi:10.1002/cncr.10763.
- 136. Han SV, Park M, Kwon YM, et al. Mild Anemia and Risk for All-Cause, Cardiovascular and Cancer Deaths in Apparently Healthy Elderly Koreans. Korean J Fam Med. 2019;40(3):151-8. doi:10.4082/kjfm.17.0089.
- Penninx BWJH, Pahor M, Woodman RC, Guralnik JM. Anemia in Old Age Is Associated With Increased Mortality and Hospitalization. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2006;61(5):474-9. doi:10.1093/gerona/61.5.474.
- Goodnough LT, Schrier SL. Evaluation and management of anemia in the elderly. American J Hematol. 2014;89(1):88-96. doi:10.1002/ajh.23598.
- 140. Contaldo A, Losurdo G, Albano F, et al. The Spectrum of Small Intestinal Lesions in Patients with Unexplained Iron Deficiency Anemia Detected by Video Capsule Endoscopy. Medicina. 2019;55(3):59. doi:10.3390/medicina55030059.
- Masclee GMC, Valkhoff VE, Coloma PM, et al. Risk of Upper Gastrointestinal Bleeding From Different Drug Combinations. Gastroenterology. 2014;147(4):784-92. doi:10.1053/j.gastro.2014.06.007.
- 142. Wilhelm SM, Rjater RG, Kale-Pradhan PB. Perils and pitfalls of long-term effects of proton pump inhibitors. Expert Review of Clinical Pharmacology. 2013;6(4):443-51. doi:10.1586/17512433.2013.811206.
- 143. French JB, Pamboukian SV, George JF, et al. Gastrointestinal Bleeding in Patients with Ventricular Assist Devices Is Highest Immediately After Implantation. ASAIO Journal. 2013;59(5):480-5. doi:10.1097/MAT.0b013e3182a4b434.
- 144. Braz VL, Duarte YADO, Corona LP. A associação entre anemia e alguns aspectos da funcionalidade em idosos. Ciênc saúde coletiva. 2019;24(9):3257-64. doi:10.1590/ 1413-81232018249.21142017.
- 145. Xi R, Wang R, Wang Y, et al. Comparative analysis of the oral microbiota between iron-deficiency anaemia (IDA) patients and healthy individuals by high-throughput sequencing. BMC Oral Health. 2019;19(1):255. doi:10.1186/s12903-019-0947-6.
- 146. Drozdov VN, Noskova KK, Petrakov AN. The effectiveness of iron absorption when taken separately and simultaneously with calcium. Therapist. 2007;(9):47-51. (In Russ.)

- Дроздов В.Н., Носкова К.К., Петраков А.Н. Эффективность всасывания железа при раздельном и одновременном приеме с кальцием. Терапевт. 2007;(9):47-51.
- Logan RPH, Walker MM. ABC of the upper gastrointestinal tract: Epidemiology and diagnosis of Helicobacter pylori infection. BMJ. 2001;323(7318):920-2. doi:10.1136/ bmj.323.7318.920.
- 148. Bakirova AE, Alekseev DG, Partsernyak AS, Bakirov BA. Interrelation of intestinal microbiota and iron deficiency anemia. Effective pharmacotherapy. 2024;20(30):56-62. (In Russ.) Бакирова А.Э., Алексеев Д.Г., Парцерняк А.С., Бакиров Б.А. Вза-имосвязь кишечной микробиоты и железодефицитной анемии. Эффективная фармакотерапия. 2024;20(30):56-62. doi:10.33978/2307-3586-2024-20-30-56-62.
- Choi G, Bessman NJ. Iron at the crossroads of host-microbiome interactions in health and disease. Nat Microbiol. 2025;10(6):1282-93. doi:10.1038/s41564-025-02001-y.
- Soysal P, Stubbs B, Lucato P, et al. Inflammation and frailty in the elderly: A systematic review and meta-analysis. Ageing Research Reviews. 2016;31:1-8. doi:10.1016/j.arr.2016.08.006.
- 151. Bian AL, Hu HY, Rong YD, et al. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. Eur J Med Res. 2017;22(1):25. doi:10.1186/ s40001-017-0266-9.
- 152. Rong YD, Bian AL, Hu HY, et al. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. BMC Geriatr. 2018;18(1):308. doi:10.1186/s12877-018-1007-9.
- 153. Zille De Queiroz B, De Britto Rosa NM, Pereira DS, et al. Inflammatory mediators and the risk of falls among older women with acute low back pain: data from Back Complaints in the Elders (BACE) — Brazil. Eur Spine J. 2020;29(3):549-55. doi:10.1007/s00586-019-06168-x.
- 154. Ng A, Tam WW, Zhang MW, et al. IL-1β, IL-6, TNF-α and CRP in Elderly Patients with Depression or Alzheimer's disease: Systematic Review and Meta-Analysis. Sci Rep. 2018;8(1):12050. doi:10.1038/s41598-018-30487-6.
- Franceschi C, Garagnani P, Parini P, et al. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576-90. doi:10. 1038/s41574-018-0059-4.
- Andrès E, Serraj K, Federici L, et al. Anemia in elderly patients: New insight into an old disorder. Geriatrics Gerontology Int. 2013;13(3):519-27. doi:10.1111/ggi.12017.
- Kaunitz J, Ganz T. AGA Clinical Practice Guidelines on the Gastrointestinal Evaluation of Iron Deficiency Anemia. Gastroenterology. 2021;161(1):362-5. doi:10.1053/j.gastro.2021.03.001.
- 158. Horrigan J, Tadros M, Jacob J.An Introduction to the Clinical Approach and Management of Occult Gastrointestinal Bleeding. In: M. T, G.Y W, eds. Management of Occult GI Bleeding. Clinical Gastroenterology. Humana; 2021. doi:10.1007/978-3-030-71468-0_1.
- Rockey DC. Occult gastrointestinal bleeding. N Engl J Med. 1999;341(1):38-46. doi:10.1056/neim199907013410107.
- 160. Feinman M, Haut ER. Lower Gastrointestinal Bleeding. Surgical Clinics of North America. 2014;94(1):55-63. doi:10.1016/j.suc.2013.10.005.
- 161. Oakland K. Acute lower GI bleeding in the UK: patient characteristics, interventions and outcomes in the first nationwide audit. Gut. 2018;67(4):654-62. doi:10.1136/ gutinl-2016-313428.
- 162. Bounds BC, Kelsey PB. Lower gastrointestinal bleeding. Gastrointest Endosc Clin N Am. in eng;2007;17(2):273-88, vi. doi:10.1016/j.giec.2007.03.010.
- 163. Brief algorithms for managing patients at the stage of primary health care. A manual for general practitioners. Edited by O.M. Drapkina. Moscow: Vidox; 2019. 20 р. (In Russ.) Краткие алгоритмы ведения пациентов на этапе оказания первичной медико-санитарной помощи. Пособие для врачей-терапевтов. Под. ред. О.М. Драпкиной. М.: Видокс; 2019. 20 с. ISBN: 978-5-9500829-8-0.
- 164. Lukina EA, Ledina LV, Rogovskaya SI. Iron deficiency anemia: the view of a hematologist and gynecologist. We optimize diagnostics and treatment tactics. Breast cancer Mother and child. 2020;3(4):248-53. (In Russ.) Лукина Е.А., Ледина Л.В., Роговская С.И. Железодефицитная анемия: взгляд гематолога и гинеколога. Оптимизируем диагностику и лечебную тактику. РМЖ Мать и дитя. 2020;3(4):248-53. doi:10.3236/4/2618-8430-2020-3-4-248-253.
- 165. Nikonov EL. The use of fecal tests in colorectal cancer screening programs. Doctor. ru. 2018;(3):16-22. (In Russ.) Никонов Е.Л. Применение фекальных тестов в программах скрининга колоректального рака. ДокторРу. 2018;(3):16-22.
- 166. Kononov AV, Mozgovoy SI, Shimanskaya AG. Lifetime pathoanatomic diagnostics of diseases of the digestive system (class XI ICD-10). Clinical recommendations. Practical medicine; 2019, 192 р. (In Russ.) Кононов А.В., Мозговой С.И., Шиманская А.Г. Прижизненная патологоанатомическая диагностика болезней органов пищеварительной системы (класс XI МКБ-10). Клинические рекомендации. Практическая медицина; 2019, 192 с. ISBN: 978-5-98811-507-6.
- 167. Rockey DC, Koch J, Yee J, et al. Prospective comparison of air-contrast barium enema and colonoscopy in patients with fecal occult blood: a pilot study. Gastrointestinal Endoscopy. 2004;60(6):953-8. doi:10.1016/s0016-5107(04)02223-0.
- 168. Sengupta N, Feuerstein JD, Jairath V, et al. Management of Patients With Acute Lower Gastrointestinal Bleeding: An Updated ACG Guideline. Am J Gastroenterol. 2023;118(2):208-31. doi:10.14309/ajg.00000000000130.
- 169. Parfenov AI, Bykova SV, Sabelnikova EA, et al. The All-Russian consensus on the diagnosis and treatment of celiac disease in children and adults. The Almanac of Clinical

- Medicine. 2016;44(6):661-8. (In Russ.) Парфенов А.И., Быкова С.В., Сабельникова Е.А., et al. Всероссийский консенсус по диагностике и лечению целиакии у детей и взрослых. Альманах клинической медицины. 2016;44(6):661-8. doi:10.18786/2072-0505-2016-44-6-661-688.
- 170. Al-Radi LS, Andreeva NE, Balakireva TV, et al. Rational pharmacotherapy of diseases of the blood system. Litterra; 2009. 688 р. (In Russ.) Аль-Ради Л.С., Андреева Н.Е., Балакирева Т.В. и др. Рациональная фармакотерапия заболеваний системы крови. Литтерра; 2009. 688 с. ISBN: 978-5-904090-05-0. EDN: QLTIPP.
- 171. Bounds BC, Kelsey PB. Lower Gastrointestinal Bleeding. Gastrointestinal Endoscopy Clinics of North America. 2007;17(2):273-88. doi:10.1016/j.giec.2007.03.010.
- 172. Stewart JG, Ahlquist DA, McGill DB, et al. Gastrointestinal blood loss and anemia in runners. Ann Intern Med. 1984;100(6):843-5. doi:10.7326/0003-4819-100-6-843.
- 173. Gorokhovskaya GN, Martynov AI, Yun VL, Petina MM. Modern therapist's view on the problem of iron deficiency anemia in patients with cardiovascular pathology. Medical advice. 2020;(14):70-8. (In Russ.) Гороховская Г.Н., Мартынов А.И., Юн В.Л., Петина М.М. Современный взгляд терапевта на проблему железодефицитной анемии у пациентов с сердечно-сосудистой патологией. Медицинский Совет. 2020;(14):70-8. doi:10.21518/2079-701X-2020-14-70-78.
- 174. Sidoruk SP, Petrova EB, Mitkovskaya NP. Anemia in cardiovascular diseases. Emergency cardiology and cardiovascular risks. 2017;1(1):38-45. (In Russ.) Сидорук С.П., Петрова Е.Б., Митьковская Н.П. Анемия при сердечно-сосудистых заболеваниях. Неотложная кардиология и кардиоваскулярные риски. 2017;1(1):38-45.
- 175. Astor BC, Coresh J, Heiss G. Kidney function and anemia as risk factors for coronary heart disease and mortality: the AtheroscLerosis Risk in Communities (ARIC) Study. Am Heart J. 2006;151(2):492-500. doi:10.1016/j.ahj.2005.03.055.
- 176. Klip IjT, Comin-Colet J, Voors AA, et al. Iron deficiency in chronic heart failure: An international pooled analysis. American Heart Journal. 2013;165(4):575-82. doi:10.1016/j.ahj.2013.01.017.
- 177. Jankowska EA, Kasztura M, Sokolski M. Iron deficiency defined as depleted iron stores accompanied by unmet cellular iron requirements identifies patients at the highest risk of death after an episode of acute heart failure. Eur Heart J. 2014;35:2468-76. doi:10.1093/eurheartj/ehu235.
- 178. Okonko DO, Mandal AK, Missouris CG, Poole-Wilson PA. Disordered iron homeostasis in chronic heart failure: Prevalence, predictors, and relation to anemia, exercise capacity, and survival. J Am Coll Cardiol. 2011;58:1241-51. doi:10.1016/j.jacc.2011. 04.040.
- 179. Adams KF, Patterson JH, Oren RM. Prospective assessment of the occurrence of anemia in patients with heart failure: results from the Study of Anemia in a Heart Failure Population (STAMINA-HFP) Registry. Am Heart J. 2009;157:926-32. doi:10.1016/j.ahj.2009.01.012.
- 180. Vinogradova NG, Polyakov DS, Fomin IV. Analysis of mortality in patients with CHF after decompensation during long-term follow-up in specialized medical care and in real clinical practice. Kardiologija. 2020;60(4):91-100. (In Russ.) Виноградова Н.Г., Поляков Д.С., Фомин И.В. Анализ смертности у пациентов с ХСН после декомпенсации при длительном наблюдении в условиях специализированной медицинской помощи и в реальной клинической практике. Кардиология. 2020;60(4):91-100. doi:10.18087/cardio.2020.4.n1014.
- 181. Jonsson A, Hallberg AC, Edner M. A comprehensive assessment of the association between anemia, clinical covariates and outcomes in a population-wide heart failure registry. Int J Cardiol. 2016;211:124-31. doi:10.1016/j.ijcard.2016.02.144.
- 182. Von Haehling S, Schefold JC, Majc Hodoscek L, et al. Anaemia is an independent predictor of death in patients hospitalized for acute heart failure. Clin Res Cardiol. 2010;99(2):107-13. doi:10.1007/s00392-009-0092-3.
- 183. Komajda M, Anker SD, Charlesworth A, et al. The impact of new onset anaemia on morbidity and mortality in chronic heart failure: results from COMET. European Heart Journal. 2006;27(12):1440-6. doi:10.1093/eurhearti/ehl012.
- 184. O'Meara E, Clayton T, McEntegart MB. Clinical correlates and consequences of anemia in a broad spectrum of patients with heart failure: results of the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM. Program CHARM Committees and Investigators Circulation. 2006;113(7):986-94. doi:10.1161/CIRCULATIONAHA.105.582577.
- 185. Kupryashov AA, Rivnyak MI. Anemia associated with circulatory insufficiency: epidemiology, pathogenesis, prognosis. Clinical physiology of blood circulation. 2020;17(3):172-82. (In Russ.) Купряшов А.А., Ривняк М.И. Анемия, ассоциированная с недостаточностью кровообращения: эпидемиология, патогенез, прогноз. Клиническая физиология кровообращения. 2020;17(3):172-82. doi:10.24022/1814-6910-2020-17-3-172-182.
- 186. Jankowska EA, Haehling S, Anker SD. Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur Heart J. 2013;34:816-29. doi:10.1093/ eurhearti/ehs224.
- 187. Enjuanes C, Klip IjT, Bruguera J, et al. Iron deficiency and health-related quality of life in chronic heart failure: Results from a multicenter European study. International Journal of Cardiology. 2014;174(2):268-75. doi:10.1016/j.ijcard.2014.03.169.
- 188. Kupryashov AA, Rivnyak MI, Koloskova NN, et al. Factors determining the physical performance of patients with circulatory insufficiency and anemia. Creative cardiology. 2019;13(4):349-62. (In Russ.) Купряшов А.А., Ривняк М.И., Колоскова Н.Н.

- и др., Глушко Л.А., Мироненко В.А., Бокерия Л.А. Факторы, определяющие физическую работоспособность больных с недостаточностью кровообращения и анемией. Креативная кардиология. 2019;13(4):349-62. doi:10.24022/1997-3187-
- Núñez J, Comín-Colet J, Miñana G. Iron deficiency and risk of early readmission following a hospitalization for acute heart failure. Eur J Heart Fail. 2016;18:798-802. doi:10.1002/ejhf.513.
- Ponikowski P, Kirwan BA, Anker SD, et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet. 2020;396(10266):1895-904. doi:10.1016/S0140-6736(20)32339-4.
- Melenovsky V, Petrak J, Mracek T, et al. Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis. European J of Heart Fail. 2017;19(4):522-30. doi:10.1002/ejhf.640.
- 192. Kupryashov AA, Rivnyak MI. Hypoxia and iron deficiency: synergistic effects on the body. Clinical physiology of blood circulation. 2022;19(1):57-69. (In Russ.) Купряшов А.А., Ривняк М.И. Гипоксия и дефицит железа: синергичные эффекты на организм. Клиническая физиология кровообращения. 2022;19(1):57-69. doi:10. 24022/1814-6910-2022-19-1-57-69.
- Turner LR, Premo DA, Gibbs BJ. Adaptations to iron deficiency: cardiac functional responsiveness to norepinephrine, arterial remodeling, and the effect of beta-blockade on cardiac hypertrophy. BMC Physiol. 2002;2:1. doi:10.1186/1472-6793-2-1.
- 194. Naito Y, Tsujino T, Matsumoto M, et al. Adaptive response of the heart to long-term anemia induced by iron deficiency. American Journal of Physiology-Heart and Circulatory Physiology. 2009;296(3):H585-H593. doi:10.1152/ajpheart.00463.2008.
- Dong F, Zhang X, Culver B, et al. Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: involvement of nitric oxide synthase and protein tyrosine nitration. Clinical Science. 2005;109(3):277-86. doi:10.1042/CS20040278.
- Tang YD, Katz SD. The prevalence of anemia in chronic heart failure and its impact on the clinical outcomes. Heart Fail Rev. 2008:13:387-92. doi:10.1007/s10741-008-9089-7.
- 197. Ezekowitz JA, McAlister FA, Armstrong PW. Anemia is common in heart failure and is associated with poor outcomes: insights from a cohort of 12065 patients with new-onset heart failure. Circulation. 2003;107:223-5. doi:10.1161/01.cir.0000052622.51963.fc.
- 198. Anand IS, Kuskowski MA, Rector TS, et al. Anemia and change in hemoglobin over time related to mortality and morbidity in patients with chronic heart failure: results from Val-HeFT. Circulation. 2005;112:1121-7. doi:10.1161/CIRCULATIONAHA.104.512988.
- 199. Rocha BML, Cunha GJL, Menezes Falcão LF. The Burden of Iron Deficiency in Heart Failure. Journal of the American College of Cardiology. 2018;71(7):782-93. doi:10.1016/j.jacc.2017.12.027.
- 200. Mareev VY, Gilyarevsky SR, Mareev YV, et al. The agreed opinion of experts on the role of iron deficiency in patients with chronic heart failure, as well as on modern approaches to its correction. Kardiologija. 2020;60(1):99-106. (In Russ.) Мареев В.Ю., Гиляревский С.Р., Мареев Ю.В., и др. Согласованное мнение экспертов по поводу роли дефицита железа у больных с хронической сердечной недостаточностью, а также о современных подходах к его коррекции. Кардиология. 2020; 60(1):99-106. doi:10.18087/cardio.2020.1.9961
- Mistry RH, Kohut A, Ford P. Correction of iron deficiency in hospitalized heart failure patients does not improve patient outcomes. Annals of Hematology. 2020;100(3):661-6. doi:10.1007/s00277-020-04338-2.
- Cohen-Solal A. Diagnosis and treatment of iron deficiency in patients with heart failure: expert position paper from French cardiologists. Arch Cardiovasc Dis. 2014;107:563-71. doi:10.1016/j.acvd.2014.07.049.
- Anand IS, Gupta P. Anemia and Iron Deficiency in Heart Failure. Circulation. 2018;
 138(1):80-98. doi:10.1161/CIRCULATIONAHA.118.030099.
- Weiss G, Goodnough LT. Anemia of Chronic Disease. N Engl J Med. 2005;352(10): 1011-23. doi:10.1056/NEJMra041809.
- Von Haehling S, Jankowska EA, Van Veldhuisen DJ, et al. Iron deficiency and cardiovascular disease. Nat Rev Cardiol. 2015;12(11):659-69. doi:10.1038/nrcardio. 2015.109.
- 206. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal. 2021;42(36):3599-726. doi:10.1093/eurheartj/ehab368.
- 207. Grote Beverborg N, Klip IjT, Meijers WC, et al. Definition of Iron Deficiency Based on the Gold Standard of Bone Marrow Iron Staining in Heart Failure Patients. Circ: Heart Failure. 2018;11(2):e004519. doi:10.1161/CIRCHEARTFAILURE.117.004519.
- Jankowska EA, Wojtas K, Kasztura M, et al. Bone marrow iron depletion is common in patients with coronary artery disease. International Journal of Cardiology. 2015;182:517-22. doi:10.1016/j.ijcard.2014.10.006.
- Mleczko-Sanecka K, Silva AR, Call D. Imatinib and spironolactone suppress hepcidin expression. Haematologica. 2017;102:1173-84. doi:10.3324/haematol.2016.162917.
- 210. Lewis GD, Malhotra R, Hernandez AF. Effect of Oral Iron Repletion on Exercise Capacity in Patients with Heart Failure with Reduced Ejection Fraction and Iron Deficiency: the IRONOUT HF Randomized Clinical Trial. for the NHLBI Heart Failure Clinical Research Network JAMA. 2017;317(19):1958-66. doi:10.1001/jama.2017.5427.
- Anker SD, Comin Colet J, Filippatos G. FAIR-HF Trial Investigators. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009; 361:2436-48. doi:10.1056/NEJMoa0908355.

- Veldhuisen DJ, Ponikowski P, Meer P. EFFECT-HF Investigators. Effect of ferric carboxymaltose on exercise capacity in patients with chronic heart failure and iron deficiency. Circulation. 2017:136:1374-83. doi:10.1161/CIRCULATIONAHA.117.027497.
- 213. Filippatos G, Farmakis D, Colet JC. Intravenous ferric carboxymaltose in iron-deficient chronic heart failure patients with and without anaemia: a subanalysis of the FAIR-HF trial. Eur J Heart Fail. 2013;15:1267-76. doi:10.1093/eurjhf/hft099.
- 214. Jankowska EA, Tkaczyszyn M, Suchocki T, et al. Effects of intravenous iron therapy in iron-deficient patients with systolic heart failure: a meta-analysis of randomized controlled trials. European J of Heart Fail. 2016;18(7):786-95. doi:10.1002/ejhf.473.
- 215. Anker SD, Kirwan BA, Veldhuisen DJ. Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: an individual patient data meta-analysis. Eur J Heart Fail. 2018;20:125-33. doi:10.1002/ejhf.823.
- 216. Kalra PR, Cleland JGF, Petrie MC, et al. Intravenous ferric derisomaltose in patients with heart failure and iron deficiency in the UK (IRONMAN): an investigator-initiated, prospective, randomised, open-label, blinded-endpoint trial. The Lancet. 2022;400(10369):2199-209. doi:10.1016/s0140-6736(22)02083-9.
- 217. McDonagh TA, Metra M, Adamo M, et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal. 2023;44(37):3627-39. doi:10.1093/eurheartj/ehad195.
- 218. Minhas AMK, Sagheer S, Shekhar R, et al. Trends and Inpatient Outcomes of Primary Atrial Fibrillation Hospitalizations with Underlying Iron Deficiency Anemia: An Analysis of The National Inpatient Sample Database from 2004–2018. Current Problems in Cardiology. 2022;47(10):101001. doi:10.1016/j.cpcardiol.2021.101001.
- Groenveld HF, Januzzi JL, Damman K, et al. Anemia and Mortality in Heart Failure Patients. Journal of the American College of Cardiology. 2008;52(10):818-27. doi:10. 1016/j.jacc.2008.04.061.
- Mehdi U, Toto RD. Anemia, diabetes, and chronic kidney disease. Diabetes Care. 2009;32:1320-6. doi:10.2337/dc08-0779.
- Tu SJ, Hanna-Rivero N, Elliott AD. Associations of anemia with stroke, bleeding, and mortality in atrial fibrillation: a systematic review and meta-analysis. J Cardiovasc Electrophysiol. 2021;32:686-94. doi:10.1111/jce.14898.
- 222. Xu D, Murakoshi N, Sairenchi T, et al. Anemia and Reduced Kidney Function as Risk Factors for New Onset of Atrial Fibrillation (from the Ibaraki Prefectural Health Study). The American Journal of Cardiology. 2015;115(3):328-333. doi:10.1016/j.amjcard. 2014.10.041.
- 223. Takabayashi K, Unoki T, Ogawa H, et al. Clinical characteristics of atrial fibrillation patients with anemia: from the Fushimi AF registry. European Heart Journal. 2013;34(suppl 1):P389-P389. doi:10.1093/eurheartj/eht307.P389.
- 224. Sharma S, Gage BF, Deych E, Rich MW. Anemia: An independent predictor of death and hospitalizations among elderly patients with atrial fibrillation. Am Heart J. 2009;157:1057-63. doi:10.1016/j.ahj.2009.03.009.
- An Y, Ogawa H, Esato M. Cardiovascular Events and Mortality in Patients With Atrial Fibrillation and Anemia (from the Fushimi AF Registry. Registry Investigators Am J Cardiol. 2020:134:74-82. doi:10.1016/j.amicard.2020.08.009.
- 226. Kim M, Hong M, Kim JY. Clinical relationship between anemia and atrial fibrillation recurrence after catheter ablation without genetic background. Int J Cardiol Heart Vasc. 2020;27(100507). doi:10.1016/j.ijcha.2020.100507.
- Ali AN, Athavale NV, Abdelhafiz AH. Anemia: An Independent Predictor Of Adverse Outcomes In Older Patients With Atrial Fibrillation. J Atr Fibrillation. 2016;8(6):1366. doi:10.4022/jafib.1366.
- Goodnough LT, Nemeth E, Ganz T. Detection, evaluation, and management of ironrestricted enythropoiesis. Blood. 2010;116:4754-61. doi:10.1182/blood-2010-05-286260.
- 229. Keskin M, Ural D, Altay S, et al. Iron deficiency and hematinic deficiencies in atrial fibrillation: A new insight into comorbidities. Turk Kardiyol Dern Ars. 2018;46(2):103-10. doi:10.5543/tkda.2018.51001.
- 230. He S, Feng R, Xu Z. Digoxin-induced anemia among patients with atrial fibrillation and heart failure: clinical data analysis and drug-gene interaction network. Oncotarget. 2017;8(34):57003-11. doi:10.18632/oncotarget.18504.
- 231. Tu SJ, Elliott AD, Hanna-Rivero N, et al. Rationale and design of the IRON-AF study: a double-blind, randomised, placebo-controlled study to assess the effect of intravenous ferric carboxymaltose in patients with atrial fibrillation and iron deficiency. BMJ Open. 2021;11(8):e047642. doi:10.1136/bmjopen-2020-047642.
- 232. Simion AYu, Ovsyannikov EU, Simion KA. The relationship between iron deficiency anemia and the severity of coronary heart disease at the stage of primary health care. Cardiovascular therapy and prevention. 2024;23(56):20-1. (In Russ.) Сими-он А.Ю., Овсянников Е.С., Симион К.А. Связь железодефицитной анемии и тяжести течения ишемической болезни сердца на этапе оказания первичной медико-санитарной помощи. Кардиоваскулярная терапия и профилактика. 2024; 23(56):20-1.
- 233. Borsukov SA, Dolgaya MI, Perevozchikova ED, Kozyrev OA. Anemia in patients with coronary artery disease. Smolensk medical Almanac. 2023;(2):44-7. (In Russ.) Борсуков С.А., Долгая М.И., Перевозчикова Е.Д., Козырев О.А. Анемии у пациентов с ишемической болезнью сердца. Смоленский медицинский альманах. 2023; (2):44-7. doi:10.37903/SMA.2023.2.13.
- 234. Chizhova MA, Bolkhovitina OA, Sovenko GN, et al. Evaluation of the effectiveness of iron preparations in elderly patients suffering from coronary heart disease and iron

- deficiency anemia. Scientific Bulletin of Belgorod State University Series: Medicine Pharmacy. 2011;(4-1):91-4. (In Russ.) Чижова М.А., Болховитина О.А., Совенко Г.Н. и др. Оценка эффективности применения препаратов железа у пациентов пожилого возраста, страдающих ишемической болезнью сердца и железодефицитной анемией. Научные ведомости Белгородского государственного университета Серия: Медицина Фармация. 2011;(4-1):91-4.
- 235. Andreenko IM, Lukyanov MM, Yakushin SS, et al. Patients with early development of cardiovascular diseases in outpatient practice: age and gender characteristics, comorbidity, drug treatment and outcomes (data from the REQUAZA registry). Cardiovascular Therapy and Prevention. 2019;18(6):99-106. (In Russ.) Андреенко Е.Ю., Лукьянов М.М., Якушин С.С., и др. Больные с ранним развитием сердечно-сосудистых заболеваний в амбулаторной практике: возрастные и гендерные характеристики, коморбидность, медикаментозное лечение и исходы (данные регистра РЕКВАЗА). Кардиоваскулярная терапия и профилактика. 2019;18(6):99-106. doi:10.15829/1728-8800-2019-6-99-106.
- 236. Vinogradova NG, Chesnikova Al. Iron deficiency conditions in cardiovascular diseases: impact on prognosis and correction features. South-Russian Journal of Therapeutic Practice. 2023;4(1):7-18. (In Russ.) Виноградова Н.Г, Чесникова А.И. Железодефицитные состояния при сердечно-сосудистых заболеваниях: влияние на прогноз и особенности коррекции. Южно-Российский журнал терапевтической практики. 2023;4(1):7-18. doi:10.21886/2712-8156-2023-4-1-7-18.
- Savarese G, Von Haehling S, Butler J, et al. Iron deficiency and cardiovascular disease.
 European Heart Journal. 2023;44(1):14-27. doi:10.1093/eurheartj/ehac569.
- Corradi F, Masini G, Bucciarelli T, De Caterina R. Iron deficiency in myocardial ischaemia: molecular mechanisms and therapeutic perspectives. Cardiovascular Research. 2023;119(14):2405-20. doi:10.1093/cvr/cvad146.
- Packer M, Anker SD, Butler J, et al. Identification of three mechanistic pathways for iron-deficient heart failure. European Heart Journal. 2024;45(26):2281-93. doi:10. 1093/eurheartj/ehae284.
- 240. Reinhold J, Papadopoulou C, Baral R, Vassiliou VS. Iron deficiency for prognosis in acute coronary syndrome — A systematic review and meta-analysis. International Journal of Cardiology. 2021;328:46-54. doi:10.1016/j.ijcard.2020.12.021.
- Auerbach M, Spivak J. Treatment of Iron Deficiency in the Elderly. Clinics in Geriatric Medicine. 2019;35(3):307-17. doi:10.1016/j.cger.2019.03.003.
- 242. Rimon E, Kagansky N, Kagansky M, et al. Are we giving too much iron? Low-dose iron therapy is effective in octogenarians. The American Journal of Medicine. 2005;118(10):1142-7. doi:10.1016/j.amjmed.2005.01.065.
- Geisser P, Burckhardt S. The pharmacokinetics and pharmacodynamics of iron preparations. Pharmaceutics. 2011;3(1):12-33. doi:10.3390/pharmaceutics3010012.
- Neiser S, Koskenkorva T, Schwarz K, et al. Assessment of Dextran Antigenicity of Intravenous Iron Preparations with Enzyme-Linked Immunosorbent Assay (ELISA). IJMS. 2016;17(7):1185. doi:10.3390/ijms17071185.
- 245. Strutynsky AV. Diagnosis and treatment of iron deficiency anemia. Breast cancer Medical review. 2014;11(22):839. (In Russ.) Струтынский А.В. Диагностика и лечение железодефицитных анемий. РМЖ Медицинское обозрение. 2014; 11(22):
- Alleyne M, Horne MK, Miller JL. Individualized Treatment for Iron-deficiency Anemia in Adults. The American Journal of Medicine. 2008;121(11):943-8. doi:10.1016/j.amjmed. 2008.07.012.
- DeLoughery TG. Microcytic Anemia. N Engl J Med. 2014;371(14):1324-31. doi:10. 1056/NEJMra1215361.
- 248. Lundqvist H, Sjöberg F. Food interaction of oral uptake of iron / a clinical trial using 59Fe. Arzneimittelforschung. 2007;57(6A):401-16. doi:10.1055/s-0031-1296689.
- 249. Crichton RR. Iron Therapy With Special Emphasis on Intravenous Administration. 4th ed. UNI-MED Verlag; 2008.
- Lam JR, Schneider JL, Quesenberry CP, Corley DA. Proton Pump Inhibitor and Histamine-2 Receptor Antagonist Use and Iron Deficiency. Gastroenterology. 2017; 152(4):821-29. doi:10.1053/j.gastro.2016.11.023.
- DeLoughery TG, Jackson CS, Ko CW, Rockey DC. AGA Clinical Practice Update on Management of Iron Deficiency Anemia: Expert Review. Clinical Gastroenterology and Hepatology. 2024;22(8):1575-83. doi:10.1016/j.cqh.2024.03.046.
- Bazeley JW, Wish JB. Recent and Emerging Therapies for Iron Deficiency in Anemia of CKD: A Review. American Journal of Kidney Diseases. 2022;79(6):868-76. doi:10.1053/j.ajkd.2021.09.017.
- Camaschella C. Iron-deficiency anemia. N Engl J Med. 2015;372(19):1832-43. doi:10. 1056/NEJMra1401038.
- 254. Litton E, Xiao J, Ho KM. Safety and efficacy of intravenous iron therapy in reducing requirement for allogeneic blood transfusion: systematic review and meta-analysis of randomised clinical trials. BMJ. 2013;347(aug15 1):f4822-f4822. doi:10.1136/bmj. f4822.
- 255. Shah AA, Donovan K, Seeley C, et al. Risk of Infection Associated With Administration of Intravenous Iron: A Systematic Review and Meta-analysis. JAMA Netw Open. 2021;4(11):e2133935. doi:10.1001/jamanetworkopen.2021.33935.
- Horl WH, Vanrenterghem Y, Aljama P, et al. OPTA: Optimal treatment of anaemia in patients with chronic kidney disease (CKD). Nephrology Dialysis Transplantation. 2007;22(Supplement 3):iii20-iii26. doi:10.1093/ndt/gfm017.

- 257. Moiseev SV. Iron carboxymaltosate (Ferinject) is a new intravenous drug for the treatment of iron deficiency anemia. Clinical pharmacology and therapy. 2012;21(2): 48-53. (In Russ.) Моисеев С.В. Железа карбоксимальтозат (Феринжект) новый внутривенный препарат для лечения железодефицитной анемии. Клиническая фармакология и терапия. 2012;21(2):48-53.
- 258. Wolf M, Chertow GM, Macdougall IC, et al. Randomized trial of intravenous ironinduced hypophosphatemia. JCl Insight. 2018;3(23):e124486. doi:10.1172/jci.insight.
- 259. Schaefer B, Würtinger P, Finkenstedt A, et al. Choice of High-Dose Intravenous Iron Preparation Determines Hypophosphatemia Risk. Pantopoulos K, ed. PLoS ONE. 2016;11(12):e0167146. doi:10.1371/journal.pone.0167146.
- Klein K, Asaad S, Econs M, Rubin JE. Severe FGF23-based hypophosphataemic osteomalacia due to ferric carboxymaltose administration. BMJ Case Rep. 2018;2018;bcr2017222851. doi:10.1136/bcr-2017-222851.
- 261. Huang LL, Lee D, Troster SM, et al. A controlled study of the effects of ferric carboxymaltose on bone and haematinic biomarkers in chronic kidney disease and pregnancy. Nephrol Dial Transplant. 2018;33(9):1628-35. doi:10.1093/ndt/gfx310.
- Auerbach M, Deloughery T. Single-dose intravenous iron for iron deficiency: a new paradigm. Hematology. 2016;2016(1):57-66. doi:10.1182/asheducation-2016.1.57.
- Auerbach M, Ballard H. Clinical Use of Intravenous Iron: Administration, Efficacy, and Safety. Hematology. 2010;2010(1):338-47. doi:10.1182/asheducation-2010.1.338.
- 264. Rampton D, Folkersen J, Fishbane S, et al. Hypersensitivity reactions to intravenous iron: guidance for risk minimization and management. Haematologica. 2014;99(11): 1671-6. doi:10.3324/haematol.2014.111492.
- Auerbach M, Ballard H, Glaspy J. Clinical update: intravenous iron for anaemia. The Lancet. 2007;369(9572):1502-4. doi:10.1016/S0140-6736(07)60689-8.
- 266. Marx JJM. Iron and infection: competition between host and microbes for a precious element. Best Pract Res Clin Haematol. 2002;15(2):411-26.
- 267. Muñoz M, Laso-Morales MJ, Gómez-Ramírez S, et al. Pre-operative haemoglobin levels and iron status in a large multicentre cohort of patients undergoing major elective surgery. Anaesthesia. 2017;72(7):826-34. doi:10.1111/anae.13840
- 268. Muñoz M, Gömez-Ramírez S, Cuenca J, et al. Very-short-term perioperative intravenous iron administration and postoperative outcome in major orthopedic surgery: A pooled analysis of observational data from 2547 patients. Transfusion. 2014;54(2): 289-99. doi:10.1111/trf.12195
- Fowler AJ, Ahmad T, Phull MK, Allard S, Gillies MA, Pearse RM. Meta-analysis of the association between preoperative anaemia and mortality after surgery. Br J Surg. 2015;102(11):1314-24. doi:10.1002/bjs.9861
- 270. Kupryashov AA, Kuksina EV, Kicheva GA. The effect of preoperative anemia and transfusions of allogeneic erythrocytes on the results of surgical treatment of patients with heart valve defects: pseudorandomization. Thoracic and cardiovascular surgery. 2025;67(1):67-78. (In Russ.) Купряшов А. А., Куксина Е. В., Хичева Г. А. Влияние дооперационной анемии и трансфузий аллогенных эритроцитов на результаты хирургического лечения больных с пороками клапанов сердца: псевдорандомизация. Грудная и сердечно-сосудистая хирургия. 2025;67(1):67-78. doi:10.24022/0236-2791-2025-67-1-67-78
- 271. Kupryashov AA, Kuksina EV, Kicheva GA, Haidarov GA. The effect of anemia on the results of myocardial revascularization performed under conditions of artificial circulation. Kardiologija. 2021;61(11):42-8. (In Russ.) Купряшов А.А., Куксина Е.В., Хичева Г.А., Хайдаров Г.А. Влияние анемии на результаты реваскуляризации миокарда, выполненной в условиях искусственного кровообращения. Кардиология. 2021;61(11):42-8.
- 272. Muñoz M, Acheson AG, Auerbach M, et al. International consensus statement on the peri-operative management of anaemia and iron deficiency. Anaesthesia. 2017;72(2):233-247. doi:10.1111/anae.13773.
- 273. Kupryashov AA, Samuilova OV, Samuilova DS. Careful treatment of the patient's blood as a priority strategy in cardiac surgery. Hematology and transfusiology. 2021;66(3):395-416. (In Russ.) Купряшов А.А., Самуилова О.В., Самуилова Д.Ш. Бережное отношение к крови больного как приоритетная стратегия в кардио-хирургии. Гематология и трансфузиология. 2021;66(3):395-416. doi:10.35754/0234-5730-2021-66-3-395-416.
- 274. Rogers BA, Cowie A, Alcock C, Rosson JW. Identification and treatment of anaemia in patients a waiting hip replacement. Ann R Coll Surg Engl. 2008;90(6):504-7. doi:10.1308/003588408X301163.
- 275. González-Pérez A, Al-Sibai JZ, Álvarez-Fernández P, et al. Liberal red blood cell transfusions impair quality of life after cardiac surgery. Med Intensiva (Engl Ed). 2019;43(3):156-64. English, Spanish. doi:10.1016/j.medin.2018.01.014.
- 276. Acheson AG, Brookes MJ, Spahn DR. Effects of allogeneic red blood cell transfusions on clinical outcomes in patients undergoing colorectal cancer surgery: A systematic review and meta-analysis. Ann Surg. 2012;256(2):235-44. doi:10.1097/SLA.0b013e31825b35d5.
- Salpeter SR, Buckley JS, Chatterjee S. Impact of more restrictive blood transfusion strategies on clinical outcomes: A meta-analysis and systematic review. Am J Med. 2014;127(2):124-131.e3. doi:10.1016/j.amjmed.2013.09.017.
- 278. Zhou X, Xu Z, Wang Y, Sun L, Zhou W, Liu X. Association between storage age of transfused red blood cells and clinical outcomes in critically ill adults: A meta-analysis

- of randomized controlled trials. Med Intensiva (Engl Ed). 2019;43(9):528-537. English, Spanish. doi:10.1016/j.medin.2018.07.004.
- Muñoz M, Gómez-Ramírez S, Kozek-Langeneker S, et al. "Fit to fly": Overcoming barriers to preoperative haemoglobin optimization in surgical patients. Br J Anaesth. 2015;115(1):15-24. doi:10.1093/bja/aev165.
- 280. Rosencher N, Kerkkamp HEM, Macheras G, et al. Orthopedic surgery transfusion hemoglobin european overview (OSTHEO) study: Blood management in elective knee and hip arthroplasty in Europe. Transfusion. 2003;43(4):459-69. doi:10.1046/ j.1537-2995.2003.00348.x.
- 281. Gombotz H, Rehak PH, Shander A, Hofmann A. Blood use in elective surgery: The Austrian benchmark study. Transfusion. 2007;47(8):1468-80. doi:10.1111/j.1537-2995.
- 282. Moretti D, Goede JS, Zeder C, et al. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood. 2015 2;126(17):1981-9. doi:10.1182/blood-2015-05-642223.
- Rimon E, Kagansky N, Kagansky M, et al. Are we giving too much iron? Low-dose iron therapy is effective in octogenarians. Am J Med. 2005;118(10):1142-7. doi:10.1016/j. amjmed.2005.01.065.
- 284. Calleja JL, Delgado S, del Val A, et al. Ferric carboxymaltose reduces transfusions and hospital stay in patients with colon cancer and anemia. Int J Colorectal Dis. 2016;31(3):543-51. doi:10.1007/s00384-015-2461-x
- Keeler BD, Simpson JA, Ng O, et al. IVICA Trial Group. Randomized clinical trial of preoperative oral versus intravenous iron in anaemic patients with colorectal cancer. Br J Surg. 2017;104(3):214-21. doi:10.1002/bjs.10328.
- Gómez Ramírez S, Remacha Sevilla ÁF, Muñoz Gómez M. Anaemia in the elderly. Med Clin (Barc). 2017;149(11):496-503. English, Spanish. doi:10.1016/j.medcli.2017.06.025.
- 287. Weltert L, Rondinelli B, Bello R, et al. A single dose of erythropoietin reduces perioperative transfusions in cardiac surgery: Results of a prospective single-blind randomized controlled trial. Transfusion. 2015;55(7):1644-54. doi:10.1111/trf.13027.
- 288. Yoo YC, Shim JK, Kim JC, et al. Effect of single recombinant human erythropoietin injection on transfusion requirements in preoperatively anemic patients undergoing valvular heart surgery. Anesthesiology. 2011;115(5):929-37. doi:10.1097/ALN. 0b013e318232004b.
- NBA (National Blood Authority). Patient Blood Management Guidelines: Module 2-Perioperative. 168 p. ISBN: 978-0-9775298-7-2.
- 290. Shander A, Knight K, Thurer R, et al. Prevalence and outcomes of anemia in surgery: a systematic review of the literature. Am J Med. 2004;116 Suppl 7A:58S-69S. doi: 10.1016/j.amimed.2003.12.013.
- Muñoz M, García-Erce JA, Remacha ÁF. Disorders of iron metabolism. Part II: Iron deficiency and iron overload. J Clin Pathol. 2011;64(4):287-96. doi:10.1136/jcp.2010.086991.
- 292. Leal-Noval SR, Muñoz M, Asuero M, et al. Spanish Expert Panel on Alternatives to Allogeneic Blood Transfusion. Spanish Consensus Statement on alternatives to allogeneic blood transfusion: the 2013 update of the "Seville Document". Blood Transfus. 2013;11(4):585-610. doi:10.2450/2013.0029-13.
- 293. Muñoz M, Naveira E, Seara J, Cordero J. Effects of postoperative intravenous iron on transfusion requirements after lower limb arthroplasty. Br J Anaesth. 2012; 108(3):532-4. doi:10.1093/bja/aes012.
- 294. Yoon HM, Kim YW, Nam BH, et al. Intravenous iron supplementation may be superior to observation in acute isovolemic anemia after gastrectomy for cancer. World J Gastroenterol. 2014;20(7):1852-7. doi:10.3748/wjg.v20.i7.1852.
- 295. Seid MH, Derman RJ, Baker JB, et al. Ferric carboxymaltose injection in the treatment of postpartum iron deficiency anemia: a randomized controlled clinical trial. Am J Obstet Gynecol. 2008;199(4):435.e1-7. doi:10.1016/j.ajog.2008.07.046.
- 296. Khalafallah AA, Yan C, Al-Badri R, et al. Intravenous ferric carboxymaltose versus standard care in the management of postoperative anaemia: a prospective, open-label, randomised controlled trial. Lancet Haematol. 2016;3(9):e415-25. doi:10.1016/S2352-3026(16)30078-3.
- 297. Bisbe E, Moltó L, Arroyo R, et al. Randomized trial comparing ferric carboxy-maltose vs oral ferrous glycine sulphate for postoperative anaemia after total knee arthroplasty. British Journal of Anaesthesia. 2014;113(3):402-9. doi:10.1093/bja/aeu092.
- 298. Kim YW, Bae JM, Park YK. Effect of Intravenous Ferric Carboxymaltose on Hemoglobin Response Among Patients With Acute Isovolemic Anemia Following Gastrectomy: The FAIRY Randomized Clinical Trial. JAMA. 2017;317(20):2097-104. doi:10.1001/jama.2017.5703.

- 299. Golukhova EZ, Kupryashov AA, Khicheva GA, et al. Assessment of the socioeconomic benefits of introducing patient blood management into the practice
 of surgical interventions for coronary heart disease (I20-I25). Kardiologija.
 2021;61(3):77-86. (In Russ.) Голухова Е.З., Купряшов А.А., Хичева Г.А. и др.
 Оценка социально-экономических выгод от внедрения менеджмента крови
 пациентов в практику оперативных вмешательств по поводу ишемической
 болезни сероца (I20-I25). Кардиология. 2021;61(3):77-86.
- 300. Zhiburt EB, Madzaev SR, Shestakov EA. Patient Blood Management. Vol 121. (2nd edition, ed.). N.I. Pirogov National Medical and Surgical Center. 2021. (In Russ.) Жибурт Е.Б., Мадзаев С.Р., Шестаков Е.А. Менеджмент Крови Пациента. Vol 121. (2-е издание, ed.). Национальный медико-хирургический центр имени Н.И. Пилогова. 2021
- 301. Zhiburt EB. Pediatric Transfusiology. Vol 344. Geotar-Media. 2023. (In Russ.) Жибурт Е.Б. Детская Трансфузиология. Vol 344. Гэотар-Медиа. 2023.
- Chouraqui JP. Dietary Approaches to Iron Deficiency Prevention in Childhood A Critical Public Health Issue. Nutrients. 2022;14(8):1604. doi:10.3390/nu14081604.
- 303. Cohen CT, Powers JM. Nutritional Strategies for Managing Iron Deficiency in Adolescents: Approaches to a Challenging but Common Problem. Advances in Nutrition. 2024;15(5):100215. doi:10.1016/j.advnut.2024.100215.
- 304. Da Silva Lopes K, Yamaji N, Rahman MdO, et al. Nutrition-specific interventions for preventing and controlling anaemia throughout the life cycle: an overview of systematic reviews. Cochrane Developmental, Psychosocial and Learning Problems Group, ed. Cochrane Database of Systematic Reviews. 2021;2022(1). doi:10.1002/ 14651858.CD013092.pub2.
- 305. Skolmowska D, Głąbska D, Kołota A, Guzek D. Effectiveness of Dietary Interventions to Treat Iron-Deficiency Anemia in Women: A Systematic Review of Randomized Controlled Trials. Nutrients. 2022;14(13):2724. doi:10.3390/nu14132724.
- Lopez De Romaña D, Mildon A, Golan J, et al. Review of intervention products for use in the prevention and control of anemia. Annals of the New York Academy of Sciences. 2023:1529(1):42-60. doi:10.1111/nvas.15062.
- 307. Pasricha SR, Drakesmith H, Black J, et al. Control of iron deficiency anemia in low- and middle-income countries. Blood. 2013;121(14):2607-17. doi:10.1182/blood-2012-09-453522.
- 308. EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, et al. Scientific opinion on the tolerable upper intake level for iron. EFS2. 2024;22(6). doi:10.2903/j.efsa.2024.8819.
- Pineda O, Ashmead HD. Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition. 2001;17(5):381-4. doi:10.1016/S0899-9007(01)00519-6.
- 310. Ferrari P, Nicolini A, Manca ML, et al. Treatment of mild non-chemotherapy-induced iron deficiency anemia in cancer patients: Comparison between oral ferrous bisglycinate chelate and ferrous sulfate. Biomedicine & Pharmacotherapy. 2012;66(6):414-8. doi:10.1016/j.biopha.2012.06.003.
- 311. Fischer JAJ, Cherian AM, Bone JN, Karakochuk CD. The effects of oral ferrous bisglycinate supplementation on hemoglobin and ferritin concentrations in adults and children: a systematic review and meta-analysis of randomized controlled trials. Nutrition Reviews. 2023;81(8):904-20. doi:10.1093/nutrit/nuac106.
- 312. Bakirov BA, Nagaev IR, Donskov SV. Nutritional correction of iron metabolism status in women of reproductive age: results of an open prospective post-marketing study with active control in parallel groups. Cardiosomatics. 2025;16(1):62-75. (In Russ.) Бакиров Б. А., Нагаев И.Р., Донсков С.В. Нутритивная коррекция статуса обмена железа у женщин репродуктивного возраста: результаты открытого проспективного пострегистрационного исследования с активным контролем в параллельных группах. CardioCоматика. 2025;16(1):62-75. doi:10.17816/
- 313. Iolascon A, Andolfo I, Russo R, et al. Recommendations for diagnosis, treatment, and prevention of iron deficiency and iron deficiency anemia. HemaSphere. 2024;8(7): e108. doi:10.1002/hem3.108.
- 314. Drapkina OM, Avalueva EB, Bakulin IG, et al. Management of patients with iron deficiency anemia at the stage of primary health care. Practical guide. M.: ROPNIZ, LLC "Silicea-Polygraph", 2022, 88 р. (In Russ.) Драпкина О.М., Авалуева Е.Б., Бакулин И.Г. и др. Ведение пациентов с железодефицитной анемией на этапе оказания первичной медико-санитарной помощи. Практическое руководство. М.: РОПНИЗ, ООО "Силицея-Полиграф", 2022, 88 с. ISBN: 978-5-6046966-3-7 doi:10.15829/ROPNIZ-zda-2022. EDN: TKORUS.

Отношения и деятельность: все авторы заявляют об отсутствии потенциального конфликта интересов, требующего раскрытия в данной статье.

Драпкина Оксана Михайловна (Oksana M. Drapkina) — д.м.н., профессор, академик РАН, директор ФГБУ "НМИЦ терапии и профилактической медицины" Минздрава России, главный внештатный специалист по терапии и общей врачебной практике Минздрава России, зав. кафедрой терапии и профилактической медицины ФГБОУ ВО "Российский университет медицины" Минздрава России, ORCID: 0000-0002-4453-8430;

Авалуева Елена Борисовна (Elena B. Avalueva) — д.м.н., профессор, профессор кафедры пропедевтики внутренних болезней, гастроэнтерологии и диетологии им. С. М. Рысса ФГБОУ ВО "СЗГМУ им. И. И. Мечникова" Минздрава России, ORCID: 0000-0001-6011-0998;

Бакулин Игорь Геннадьевич (Igor G. Bakulin) — д.м.н., профессор, декан лечебного факультета, зав. кафедрой пропедевтики внутренних болезней, гастроэнтерологии и диетологии им. С.М. Рысса ФГБОУ ВО "СЗГМУ им. И.И. Мечникова" Минздрава России, главный внештатный специалисттерапевт Северо-Западного федерального округа РФ, ORCID: 0000-0002-6151-2021;

Бакиров Булат Ахатович (Bulat A. Bakirov) — д.м.н., доцент, зав. кафедрой госпитальной терапии №2 Башкирского государственного медицинского университета, ORCID: 0000-0002-3297-1608;

Баранов Игорь Иванович (Igor I. Baranov) — д.м.н., профессор, вице-президент Российского общества акушеров-гинекологов, зав. отделом научнообразовательных программ ФГБУ "НМИЦ акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова" Минздрава России, ORCID: 0000-0002-9813-2823;

Виноградова Надежда Георгиевна (Nadezhda G. Vinogradova) — д.м.н., профессор кафедры внутренних болезней ФГАОУ ВО "Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского", ORCID: 0000-0002-3391-7937;

Виноградова Мария Алексеевна (Maria A. Vinogradova) — к.м.н., доцент кафедры гематологии и трансфузиологии им. акад. И. А. Кассирского и А. И. Воробьева ФГБОУ ДПО "РМАНПО" Минздрава России, ORCID: 0000-0001-9827-1922;

Гапонова Татьяна Владимировна (Tatiana V. Gaponova) — д.м.н., первый заместитель генерального директора ФГБУ "НМИЦ гематологии" Минздрава России, главный внештатный специалист трансфузиолог Минздрава России, ORCID: 0000-0002-9684-5045;

Гаус Ольга Владимировна (Olga V. Gaus) — д.м.н., профессор кафедры факультетской терапии и гастроэнтерологии ФГБОУ ВО "ОмГМУ" Минздрава России, ORCID: 0000-0001-9370-4768;

Гиляревский Сергей Руджерович (Sergey R. Gilyarevsky) — д.м.н., профессор кафедры клинической фармакологии и терапии ФГБОУ ДПО "РМАНПО" Минздрава России, ORCID: 0000-0002-8505-1848;

Голшмид Мария Владимировна (Maria V. Golshmid) — к.м.н., доцент кафедры клинической фармакологии и терапии ФГБОУ ДПО "РМАНПО" Минздрава России, ORCID: 0000-0002-9865-4998;

Дроздова Любовь Юрьевна (Liubov Yu. Drozdova) — к.м.н., руководитель отдела стратегического планирования и внедрения профилактических технологий, ведущий научный сотрудник ФГБУ "НМИЦ терапии и профилактической медицины" Минздрава России, главный внештатный специалист по медицинской профилактике Минздрава России, ORCID: 0000-0002-4529-3308;

Дудина Галина Анатольевна (Galina A. Dudina) — д.м.н., старший научный сотрудник отдела онкогематологии и вторичных иммунодефицитных заболеваний, заведующая гематологическим отделением ГБУЗ "МКНЦ им. А. С. Логинова ДЗМ", ORCID: 0000-0001-9673-1067;

Жарова Мария Евгеньевна (Maria E. Zharova) — к.м.н., эксперт Центра организации программ скрининга онкологических заболеваний, врач-гастроэнтеролог ФГБУ "НМИЦ ТПМ" Минздрава России, ORCID: 0000-0002-8325-5927;

Жибурт Евгений Борисович (Evgeny B. Zhiburt) — д.м.н., профессор, академик РАЕН, зав. кафедрой трансфузиологии ФГБУ "НМХЦ им. Н.И. Пирогова" Минздрава России, ORCID: 0000-0002-7943-6266;

Журина Ольга Николаевна (Olga N. Zhurina) — к.м.н., зав. отделом клинической лабораторной диагностики Научно-клинического центра гематологии, онкологии и иммунологии ФГБОУ ВО "РязГМУ" Минздрава России, ORCID: нет;

Иванова Екатерина Викторовна (Ekaterina V. Ivanova) — д.м.н., главный научный сотрудник НИЛ хирургической гастроэнтерологии и эндоскопии ФГАОУ ВО "РНИМУ им. Н.И. Пирогова" Минздрава России, ORCID: 0000-0002-3019-7831;

Котовская Юлия Викторовна (Yulia V. Kotovskaya) — д.м.н., профессор, зам. директора по научной работе ОСП РГНКЦ ФГАОУ ВО "РНИМУ им. Н.И. Пирогова" Минздрава России (Пироговский Университет), ORCID: 0000-0002-1628-5093;

Кохно Алина Владимировна (Alina V. Kohno) — к.м.н., начальник клинико-диагностического отдела ФГБУ "НМИЦ гематологии" Минздрава России, ORCID: 0000-0003-0261-5941;

Куликов Иван Александрович (Ivan A. Kulikov) — зав. терапевтическим отделением, врач терапевт ЧУЗ "КБ "РЖД-Медицина", ОRCID: нет;

Купряшов Алексей Анатольевич (Aleksey A. Kupryashov) — д.м.н., профессор кафедры сердечно-сосудистой хирургии с курсом аритмологии и клинической электрофизиологии Института подготовки кадров высшей квалификации и профессионального образования, зав. отделом клинической и производственной трансфузиологии с диагностической лабораторией ФГБУ "НМИЦССХ им. А. Н. Бакулева" Минздрава России, ORCID: 0000-0001-7673-4762

Ливзан Мария Анатольевна (Maria A. Livzan) — член-корреспондент РАН, д.м.н., профессор, зав. кафедрой факультетской терапии и гастроэнтерологии, ректор ФГБОУ ВО "ОмГМУ" Минздрава России, главный внештатный специалист по терапии Сибирского федерального округа Минздрава России, ОВСІD: 0000-0001-9370-4768:

Луговская Светлана Алексеевна (Lugovskaya S.A.) — д.м.н., профессор кафедры клинической лабораторной диагностики с курсом лабораторной иммунологии ФГБОУ ДПО "РМАНПО" Минздрава России, ведущий научный сотрудник ГБУЗ "ММНКЦ им. С.П. Боткина" ДЗМ, ORCID: 0000-0002-6405-3422;

Лукина Елена Алексеевна (Elena A. Lukina) — д.м.н., профессор, зав. отделением орфанных заболеваний, ФГБУ "НМИЦ гематологии" Минздрава России. ORCID: 0000-0002-8774-850X:

Наумов Антон Вячеславович (Anton V. Naumov) — д.м.н., профессор кафедры болезней старения ИНОПР, зав. лабораторией заболеваний костномышечной системы ОСП РГНКЦ ФГАОУ ВО "РНИМУ им. Н. И. Пирогова" Минздрава России (Пироговский Университет), ORCID: 0000-0002-6253-621X;

Павлюченко Елена Сергеевна (Elena S. Pavlyuchenko) — зав. отделением гематологии и химиотерапии ФГБОУ ВО "СЗГМУ им. Мечникова" Минздрава России. ORCID: 0000-0001-7196-7866:

Паровичникова Елена Николаевна (Elena N. Parovichnikova) — член-корреспондент РАН, д.м.н., генеральный директор ФГБУ "НМИЦ гематологии" Минздрава России, главный внештатный специалист гематолог Минздрава России, ORCID: 0000-0001-6177-3566;

Пономарев Родион Викторович (Rodion V. Ponomarev) — к.м.н., руководитель сектора изучения неопухолевых заболеваний системы крови "НМИЦ гематологии" Минздрава России, ORCID: 0000-0002-1218-0796;

Рунихина Надежда Константиновна (Nadezhda K. Runikhina) — д.м.н., профессор, главный внештатный специалист гериатр ДЗМ, зам. директора по гериатрической работе ОСП РГНКЦ ФГАОУ ВО "РНИМУ им. Н.И. Пирогова" Минздрава России (Пироговский Университет), ORCID: 0000-0001-5272-0454

Скаржинская Наталья Сергеевна (Natalia S.Skarzhinskaya) — к.м.н., доцент кафедры внутренних болезней №1 ФГБОУ ВО "РостГМУ" Минздрава России. ORCID: 0000-0002-5034-8625:

Стародубова Антонина Владимировна (Antonina V. Starodubova) — д.м.н., доцент, зам. директора по научной и лечебной работе ФГБУН "ФИЦ питания и биотехнологии", зав. кафедрой факультетской терапии ИКМ ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России (Пироговский Университет), главный внештатный специалист диетолог Департамента здравоохранения города Москвы, ORCID: 0000-0001-9262-9233;

Тарасова Ирина Станиславовна (Irina S. Tarasova) — д.м.н., доцент, главный научный сотрудник ФГБУ "НМИЦ ДГОИ им. Дмитрия Рогачева" Минздрава России, ORCID: нет;

Тихомирова Екатерина Валерьевна (Ekaterina V. Tikhomirova) — к.м.н., старший научный сотрудник НИЛ хирургической гастроэнтерологии и эндоскопии института хирургии ФГАОУ ВО "РНИМУ им. Н.И. Пирогова" (Пироговский Университет), ведущий врач-эндоскопист ООО "Клиника Фомина Мичуринский", ORCID: 0000-0003-1523-9981;

Теплых Борис Анатольевич (Boris A. Teplvkh) — зав. отделением анестезиологии-реанимации № 1. врач-анестезиолог-реаниматолог высшей категории, ассистент кафедры ФГБУ "НМХЦ им. Н.И. Пирогова" Минздрава России, ORCID: 0000-0002-1784-9540;

Ткачева Ольга Николаевна (Olga N. Tkacheva) — член-корр. РАН, д.м.н., профессор, зав. кафедрой болезней старения ИНОПР, директор ОСП РГНКЦ ФГАОУ ВО "РНИМУ им. Н.И. Пирогова" Минздрава России (Пироговский Университет), главный внештатный гериатр Минздрава России, ORCID: 0000-0002-4193-688X:

Троицкая Вера Витальевна (Vera V. Troitskaya) — д.м.н., первый зам. генерального директора ФГБУ "НМИЦ гематологии" Минздрава России, главный внештатный специалист гематолог в Центральном федеральном округе Минздрава России, ORCID: 0000-0002-4827-8947;

Федоров Евгений Дмитриевич (Evgeny D. Fedorov) — д.м.н., профессор, главный научный сотрудник НИЛ хирургической гастроэнтерологии и эндоскопии ФГАОУ ВО "РНИМУ им. Н. И. Пирогова" (Пироговский Университет) Минздрава России, президент Российского эндоскопического общества. ORCID: 0000-0002-6036-7061:

Федорова Татьяна Анатольевна (Tatiana A. Fedorova) — д.м.н., зав. отделом трансфузиологии и гемокоррекции ФГБУ "НМИЦ акушерства, гинекологии и перинатологии им. акад. В. И. Кулакова" Минздрава России, ORCID: 0000-0003-1762-6934;

Ховасова Наталья Олеговна (Natalia O. Khovasova) — д.м.н., профессор кафедры болезней старения ИНОПР ФГАОУ ВО "РНИМУ им. Н. И. Пирогова" Минздрава России (Пироговский Университет), старший научный сотрудник лаборатории заболеваний костно-мышечной системы ОСП РГНКЦ ФГАОУ ВО "РНИМУ им. Н. И. Пирогова" Минздрава России (Пироговский Университет), ORCID: 0000-0002-3066-4866;

Чернов Вениамин Михайлович (Veniamiv M. Chernov) — член-корреспондент РАЕН, д.м.н., профессор, главный научный сотрудник "НМИЦ детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева" Минздрава России, ORCID: нет;

Чесникова Анна Ивановна (Anna. I. Chesnikova) — д.м.н., профессор, зав. кафедрой внутренних болезней №1 ФГБОУ ВО "РостГМУ" Минздрава России, главный внештатный терапевт Южного федерального округа, ORCID: 0000-0002-9323-592X;

Шепель Руслан Николаевич (Ruslan N. Shepel) — к.м.н., зам. директора по перспективному развитию медицинской деятельности ФГБУ "НМИЦ терапии и профилактической медицины" Минздрава России, главный внештатный специалист по терапии Минздрава России в Центральном федеральном округе, доцент кафедры терапии и профилактической медицины ФГБОУ ВО "Российский университет медицины" Минздрава России, ORCID: 0000-0002-8984-9056;

Ших Евгения Валерьевна (Evgenia V.Shikh) — член-корреспондент РАН, д.м.н., профессор, директор Института профессионального образования, зав кафедрой клинической фармакологии и пропедевтики внутренних болезней ФГАОУ ВО "Первый МГМУ им. И.М. Сеченова" Минздрава России, ORCID: 0000-0001-6589-7654.

Адреса организаций авторов:

Адреса организации авторов:

— ОБУ "Национальный медицинский исспедовательский центр терапии и профилактической медицины" Минздрава России, Петроверигский пер., 10, стр. 3, Москва, 101990, Россия; ФТБОУ ВО "Российский университет медицины" Минздрава России, ул. Долгоруковская, д. 4, Москва, 127006, Россия; ФТБОУ ВО "СЗГМУ им. И.И. Мечникова" Минздрава России, ул. Кирочная, д. 41, г. Санкт-Петербур, 191015, Россия; Бивикроский государственный медицинский университет, ул. Ленина, д. 3, Уфа, Республика Башкортостан, 450008, Россия; ФТБУ НМИЦ акушерства, гинекопоти и перинатологии им. акад. В.И. Кулакова" Минздрава России, Академика Опарина, д. 4, Москва, 117997, Россия; бТБОУ ВО "Ващиональный исспедовательский Нижегородский государственный университет им. Н. И. Лобачевского", р. Гагарина, д. 23, Нижний Новгород, 603022, Россия; бТБОУ НМИЦ геминопологии и Минздрава России, ул. Ворикадная, д. 24, Москва, 125167, Россия; обТБОУ ДПО "РМАНПО" Минздрава России, ул. Баррикадная, д. 271, стр. 1, Москва, 112593, Россия; бТБОУ МОМ, ул. Новогировеская, д. 1, кор. 1, Москва, 11123, Россия, обТБОУ ДПО "РМАНПО" Минздрава России, ул. Баррикадная, д. 271, стр. 1, Москва, 112503, Россия; обТБОУ ВО "РязГМУ" Минздрава России, ул. Высоковольтная, д. 9, Разань, 390026, Россия; обТБОУ ДПО "РМАНПО" Минздрава России, (Инмунар Премомбская, д. 70, Москва, 105203, Россия; обТБОУ ВО "РязГМУ" Минздрава России, ул. Высоковольтная, д. 9, Разань, 390026, Россия; обТБОУ ВО "РИММИ им. Н. И. Пирогова" Минздрава России, ул. Минздрава России, (Инмутрия Ульянова, д. 8, Тула, Россия; обТБОУ ВО "РМАНПОДСХ им. А. Н. Бакулева" Минздрава России, ул. Россова, 21552, Россия; чТВОУ ВС "РЖД-Медицина"; ул. Димитрия Ульянова, д. 8, Тула, Россов, обТБОУ ВО "РОССКИЯ, ОТСКВ, 21552, Россия; ОТБОУ ВО "Коминарава России, ул. Саморы Машела, д. 1, Москва, СТС-7, 117188, Россия; ОТБОУ ВО "Коминарава России, ул. Саморы Машела, д. 1, Москва, СТС-7, 117188, Россия; ОТБОУ ВО "Коминарава России, ул. Саморы Машела, д. 1, Москва, СТС-7, 117188, Россия; ОТБОУ ВО "Коминарава Рос

Addresses of the authors' institutions:

National Medician Research, Center for Therapy and Preventive Medicine of the Ministry of Health of the Russian Federation, Petroverigsky Lane, 10, bld. 3, Moscow, 101990, Russia; Russian University of Medicine of the Ministry of Health of the Russian Federation, Delgorukovskaya str., 4, Moscow, 127006, Russia; 1,1. Mechnikov NWSMU of the Ministry of Health of the Russian Federation, Kirochnaya str., 41, St., Petersburg, 191015, Russia; Bashicir State Medical University, Lenin str., 3, Uff. Republic of Bashkortostan, VI. Kulakov NMC of Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Academician Oparin str., 4, Moscow, 117997, Russia; Lobachevsky National Research Nizhny Novogorod State University, Gagarin Ave, 23, Nizhny Novogorod, 603022, Russia; National Medical Research Center of Hematology of the Ministry of Health of the Russian Federation, Novo Zykovsky Prozed, 4, Mussia, Company of Health of the Russian Federation, Novo Zykovsky Prozed, 4, Mussia, Company of Health of Health of the Russian Federation, Novo Zykovsky Prozed, 4, Mussia, Company of Health of Health of Health of the Russian Federation, Novo Zykovsky Prozed, 4, Mussia, Progov National Research Medical Center, Ministry of Health of the Russian Federation, Nizhnyaya Pervomasikaya str., 70, Moscow, 105203, Russia; Ryazan State Medical University of Health of the Russian Federation, Nizhnyaya Pervomasikaya str., 70, Moscow, 105203, Russia; Ryazan State Medical University, Office Health of the Russian Federation, Nizhnyaya Pervomasikaya str., 70, Moscow, 105203, Russia; Ryazan State Medical University, Office Health of the Russian Federation, Nizhnyaya Pervomasikaya str., 70, Moscow, 105203, Russia; Ryazan State Medical University, Office Health of the Russian Federation, Nizhnyaya Pervomasikaya str., 70, Moscow, 105203, Russia; Ryazan State Medical University, Office Health of the Russian Federation, Nizhnyaya Pervomasikaya str., 70, Moscow, 105203, Russia; Ryaza