Preview

Primary Health Care (Russian Federation)

Advanced search

Artificial intelligence in healthcare: historical trajectory, challenges and prospects (1960-2025)

https://doi.org/10.15829/3034-4123-2025-72

EDN: EBZDFN

Abstract

In the 21st century, artificial intelligence (AI) has become one of the key drivers of the digital transformation of healthcare. Its implementation spans virtually all levels, from primary care to high-tech clinics, enabling the automation of routine processes, increased diagnostic accuracy, and personalized treatment. Global challenges, such as population aging, the increasing prevalence and severity of chronic diseases, a shortage of healthcare professionals, and the need to ensure equal access to healthcare requires large-scale digital solutions. AI is viewed not only as a tool for optimizing clinical and administrative processes but also as the technological foundation for a new healthcare paradigm, shifting the emphasis from treatment to prevention and early detection.

The choice of 1960-2025 time period for this study is due to the historical significance of these six decades in the development of AI in medicine. It was in the 1960s that the first health information systems appeared, marking the beginning of automated medical data processing. In subsequent decades, the development of expert systems, machine learning, deep learning, and generative models led to the formation of a multi-layered AI infrastructure in healthcare, and by 2025, these technologies had reached a high degree of integration into clinical practice.

About the Authors

D. V. Voshev
National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Health of Russia
Russian Federation

Dmitry V. Voshev

Petroverigsky Lane, 10, bld. 3, Moscow, 101990



R. N. Shepel
National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Health of Russia; Russian University of Medicine of the Ministry of Health of Russia
Russian Federation

Ruslan N. Shepel

Petroverigsky Lane, 10, bld. 3, Moscow, 101990,

Dolgorukovskaya str., 4, Moscow, 127006



N. A. Vosheva
Data Storage Center JSC — a subsidiary of Rostelecom PJSC
Russian Federation

Nadezhda A. Vosheva

22 Ostapovsky Ave., building 16, Moscow, 109316



O. M. Drapkina
National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Health of Russia; Russian University of Medicine of the Ministry of Health of Russia
Russian Federation

Oksana M. Drapkina

Petroverigsky Lane, 10, bld. 3, Moscow, 101990,

Dolgorukovskaya str., 4, Moscow, 127006



References

1. Averkin AN, Haase-Rapoport MG, Pospelov DA. Explanatory dictionary of artificial intelligence. Moscow: Radio and Communications; 1992: 256 p. (In Russ.)

2. Starikov EN, Tyutyunnik AI. Strong artificial intelligence as an integrator of individual AI technologies into a unified system of technologies. Tendencii razvitiya nauki i obrazovaniya. 2024;(112-7):31-6. (In Russ.) doi:10.18411/trnio-08-2024-330. EDN: GQFWBA.

3. Borodulina EA, Gribova VV, Vdoushkina ES. Artificial intelligence technologies in medicine: problems of development. Vrach. 2023;34(3):5-8. (In Russ.) doi:10.29296/25877305-2023-03-01. EDN: UFCEFZ.

4. Gritskov IO, Govorov AV, Vasiliev AO, et al. Data science: deep learning neural networks and their application in healthcare. Zdorove megapolisa. 2021;2(2):109-15. (In Russ.) EDN: SGWBPD.

5. Potekaev NN, Dolya OV, Frigo NV, et al. Artificial intelligence in medicine: general provisions and philosophical aspects. Klinicheskaya dermatologiya i venerologiya. 2022;21(6):749-56. (In Russ.) EDN: LDVXNL.

6. Maron ME. Artificial intelligence and brain mechanisms. MEM RM3522-PR. Memo RM. 1963;86:1-35.

7. Martynov DA. Artificial intelligence: development of expert systems in the 1970–80s. Nauchny aspekt. 2023;23(5):2883-91. (In Russ.) EDN: GZEVZB.

8. Li J, Wang C, Wang C, et al. RPV-CASNet: range-point-voxel integration with channel self-attention network for lidar point cloud segmentation. Appl Intell. 2024. doi:10.1007/s10489-024-05553-4. EDN: ZQQCBU.

9. Solomonov M, Shapinko Y, Lalum E, et al. Can viewing modality affect frontal mandibular bone height measurement? A comparison between 3D DICOM viewer and printed PDF CBCT reports. Dent J. 2025;13(1):22. doi:10.3390/dj13010022. EDN: RIGFYX.

10. Barnett GO, Cimino JJ, Hoffer EP. DXplain: an evolving diagnostic decision-support system. JAMA. 1987;258(1):67-74.

11. Bagaev II. The concepts of neural network and convolutional neural network; training a CNN using TensorFlow. Matematicheskoe i programmnoe obespechenie sistem v promyshlennoi i sotsialnoi sferakh. 2020;8(1):15-22. (In Russ.) doi:10.18503/2306-2053-2020-8-1-15-22. EDN: IZBILN.

12. Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. NeurIPS. 2012;25. doi:10.1145/3065386.

13. Rudneva AA. Artificial intelligence and neural networks. Informatsionnye tekhnologii v stroitelnykh, sotsialnykh i ekonomicheskikh sistemakh. 2020;1(19):48-50. (In Russ.) EDN: SKXYON.

14. Shlyakhto EV, Konradi AO, Kurapeev DI. Information as a key tool for the development of personalized medicine: how to manage it for the benefit of the patient. The science of "big data". Russian Journal of Personalized Medicine. 2022;2(6):6-15. (In Russ.) doi:10.18705/2782-3806-2022-2-6-6-15. EDN: UXSOXZ.

15. Moor M, Banerjee O, Abad ZSH, et al. Foundation models for generalist medical artificial intelligence. Nature. 2023;616(7956):259-65. doi:10.1038/s41586-023-05881-4.

16. Voshev DV, Vosheva NA. ChatGPT as an element of digital medical literacy: transformation of healthcare and primary care. Menedzher zdravookhraneniya. 2023; (10):58-64. (In Russ.) doi:10.21045/1811-0185-2023-10-58-64.

17. Nora SA, Arkhipov GS, Proshina LG. Decision support system in clinical and laboratory diagnostics of allergic and infectious diseases (based on meta-analysis and own data). Vestnik NovGU. 2020;(1(117)). (In Russ.)

18. Andreichenko AE, Ermak AD, Gavrilov DV, et al. Development and validation of machine learning models predicting 12-month hospitalizations in patients with arterial hypertension. Cardiovascular Therapy and Prevention. 2025;24(1):4130. (In Russ.) doi:10.15829/1728-8800-2025-4130.

19. Kupatenko YaG, Miruk AK, Lomonosova AV, et al. Artificial intelligence in medicine: current situation and trends. Cifra. Mediko-biologicheskie nauki. 2024;2(2). (In Russ.) doi:10.60797/BMED.2024.2.4. EDN: KICZWM.

20. Kosorukov AA. Artificial intelligence technologies in modern public administration. Sociodynamics. 2019;(5):43-58. (In Russ.) doi:10.25136/2409-7144.2019.5.29714.

21. Vasiliev YuA, Vladzimirsky AV, Bondarchuk DV, et al. The value of AI technologies for preventing defects in the work of radiologists. Vrach i informacionnye tehnologii. 2023;(2):16-27. (In Russ.) doi:10.25881/18110193_2023_2_16. EDN: SYZAOQ.

22. Prozorov A, Volkov D. Distrust in medical data: problems and solutions. Otkrytye sistemy. SUBD. 2023;(4):26-32. (In Russ.) EDN: ZBNRJV.

23. Voshev DV, Son IM, Vosheva NA, et al. Digital medical literacy in primary care: a key factor of patient satisfaction in the era of digital transformation. Cardiovascular Therapy and Prevention. 2023;22(S9):22-8. (In Russ.) doi:10.15829/1728-8800-2023-3835. EDN: RXVGTN.

24. Barkalov SA, Belousov VE, Prosolupov OA. Algorithms for detecting and eliminating errors in knowledge bases of expert diagnostic systems. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Kompyuternye tekhnologii, upravlenie, radioelektronika. 2025;25(1):18-29. (In Russ.) doi:10.14529/ctcr250102. EDN: IKQYKU.

25. Akulin IM, Burtsev PN, Makhov OA, et al., eds. Artificial Intelligence in Healthcare. St.Petersburg: St.Petersburg State University Press; 2023. (In Russ.) ISBN: 978-5046336146.

26. Volkova VN. Prospects for integrating systems, cybernetic and synergetic approaches in studying self-organization. In: Technological Perspective within the Eurasian Space: New Markets and Points of Economic Growth. 2019:419-24. (In Russ.)

27. Martin E.The metaphysical gap: a critical analysis of the idea of technological singularity. Vestnik Severnogo (Arkticheskogo) federalnogo universiteta. Gumanitarnye i sotsialnye nauki. 2023;2:112-22. (In Russ

28. Ivanova AA. Neural networks as a breakthrough tool of future medicine. International Journal of Professional Science. 2024;6-2:48-56. (In Russ.) EDN: IPANAQ.

29. Li J, Carayon P.Health Care 4.0: A vision for smart and connected health care. IISE Trans Healthc Syst Eng. 2021;11:171-80. doi:10.1080/24725579.2021.1884627.

30. Thorn P.Nick Bostrom: Superintelligence: Paths, Dangers, Strategies. Minds and Machines. 2015;25:285-9. doi:10.1007/s11023-015-9377-7.

31. Peters T.Cybertheology and the ethical dimensions of artificial superintelligence: a theological inquiry into existential risks. Khazanah Theologia. 2024;6:1-12. doi:10.15575/kt.v6i1.33559.

32. Morley J, Machado CCV, Burr C, et al. The ethics of AI in health care: a mapping review. Soc Sci Med. 2020;260:113172. doi:10.1016/j.socscimed.2020.113172.

33. Søvik AO. What overarching ethical principle should a superintelligent AI follow? AI Soc. 2022;37:1505-18. doi:10.1007/s00146-021-01229-6.

34. Voshev DV. Review of methodologies and models for assessing digital maturity in primary health care organizations: international and Russian experience. Nauka molodykh (Eruditio Juvenium). 2023;11(4):615-27. (In Russ.) doi:10.23888/HMJ2023114615-627.


Review

For citations:


Voshev DV, Shepel RN, Vosheva NA, Drapkina OM. Artificial intelligence in healthcare: historical trajectory, challenges and prospects (1960-2025). Primary Health Care (Russian Federation). 2025;2(3):35-47. (In Russ.) https://doi.org/10.15829/3034-4123-2025-72. EDN: EBZDFN

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3034-4123 (Print)
ISSN 3034-4565 (Online)